Transmission System Operators for Electricity

IMPLEMENTATION GUIDELINES FOR TYNDP 2022 BASED ON 3RD ENTSO-E GUIDELINE FOR COST BENEFIT ANALYSIS OF GRID DEVELOPMENT PROJECTS

4 March 2022

Draft version | 3 June 2021

TABLE OF CONTENTS

IMPLEMENTATION GUIDELINES FOR TYNDP 2022 BASED ON 3RD ENTSO-E GUIDELINE FOR COST	
ANALYSIS OF GRID DEVELOPMENT PROJECTS	
Final version	
Table of Contents	2
1. Introduction and Scope	5
2. MODELLING FRAMEWORKS	7
2.1. SCENARIOS (2.1 in CBA 3)	9
2.2. MARKET SIMULATIONS (2.4 in CBA 3)	11
2.2.1. Tools used for market simulations	
2.2.2. Generation cost and total surplus approach	11
2.2.3. Treatment of 'third countries'	
2.2.4. Geographical scope of the market model	
2.2.5. Generation unit data	
2.2.6. Modelling assumptions	
2.2.7. Time-resolution	
2.2.8. Climate years	
2.2.9. Hurdle costs	
2.3. NETWORK SIMULATIONS (2.4 in CBA 3)	
2.3.1. Merging of the Grid Models2.3.2. Mapping the market simulation results to the network models	
2.3.2. Mapping the market simulation results to the network models	
2.3.4. Geographical scope of the grid models	
2.3.5. Sanity check of the different tools	
2.3.6. Organisation of the modelling	
2.3.7. Load-Flow calculations for the CBA-phase	
2.3.8. Load-Flow calculations for NTC calculations	
2.4. REDISPATCH SIMULATIONS (2.4 and 7.19 in CBA 3)	
2.4.1. Introduction and purpose of redispatch	
2.4.2. Main objectives of the Implementation Guidelines of the Redispatch Assessment	
2.4.3. Overview of the simulation process	20
2.4.4. Sanity check for minimum modelling requirements	
2.4.5. Additional information to be delivered by the project promoter	
2.4.6. Participating tools in the Redispatch Assessment	
2.4.7. Requirements for input data	
2.4.7.1. Market data	
2.4.7.2. Network data	
2.4.8. Minimum requirements definition for the CBA Assessment	
2.4.9. Definition of the perimeter	
2.4.10. Order of optimisation measures – Penalty costs	
2.4.12. Definition of the results for CBA from the Redispatch Assessment2.4.13. Monetisation and quantification of the redispatch results	
2.4.15. Moneusation and quantification of the redispatch results	
2.4.14. RD-Amiex 1. Data for the quality check for minimum moderning requirements	
2.5. REFERENCE ORID (2.5 III CDA 5) 2.6. INTERLINKAGE BETWEEN THE ELECTRICITY AND THE GAS SECTORS	
2.6.1. Background	

entsoe

2.6.2. Adjusted and new indicators	Draft version 3 June 2021	
3.1. CLUSTERING OF INVESTMENTS (3.2.1 in CBA 3)	2.6.2. Adjusted and new indicators	
3.2. TRANSFER CAPABILITY CALCULATION (3.2.3 in CBA 3)	3. GENERAL CONCEPTS AND ASSUMPTIONS	45
3.2. TRANSFER CAPABILITY CALCULATION (3.2.3 in CBA 3)		
3.2.1. Net transfer capacity		
3.2.2. Grid transfer capacity .49 4. BENEFIT INDICATORS (B1 – B9) .50 4.1.1. Fuel savings due to integration of RES (SEW RES) .56 4.1.1. Fuel savings due to integration of RES (SEW RES) .56 4.1.3. Relation of the SEW-sub indicators to the total SEW .57 4.2. B2 - ADDITIONAL SOCIETAL BENEFIT DUE TO CO2 EMISSIONS (7.4 in CBA 3) .57 4.2. B2 - ADDITIONAL SOCIETAL BENEFIT DUE TO CO2 EMISSIONS (7.4 in CBA 3) .57 4.3. B3 - RES INTEGRATION (7.5 in CBA 3) .60 4.4. B4 - NON-DIRECT GREENHOUSE EMISSIONS (7.6 in CBA 3) .62 4.5. B5 - VARIATION IN LOSSES (7.7 in CBA 3) .62 4.6. B6 - SoS - ADEQUACY (7.8 in CBA 3) .62 4.7. B7 - SoS - FLEXIBLITY (7.9 in CBA 3) .64 4.7. B7 - Balancing energy exchange .68 4.7.1. B7.1 - Balancing energy exchange .70 4.8. 88 - SoS - SYSTEM STABILITY (7.10 in CBA 3) .71 4.8. 88 - SoS - SYSTEM STABILITY (7.10 in CBA 3) .74 5.1 CAPEX (C1a, C1b) (7.12 in CBA 3) .74 5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) .74 5.2. OPEX (7.13 in CBA 3) .74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) .74 7. PROJECT LEVEL INDICA	3.2. TRANSFER CAPABILITY CALCULATION (3.2.3 in CBA 3)	46
4. BENEFIT INDICATORS (B1 – B9) 50 4.1. B1 – SEW (7.3 in CBA 3) 50 4.1.1. Fuel savings due to integration of RES (SEW RES) 56 4.1.2. Avoided CO ₂ emission costs (SEW CO ₂) 56 4.1.3. Relation of the SEW-sub indicators to the total SEW 57 4.2. B2 – ADDITIONAL SOCIETAL BENETIP DUE TO CO2 EMISSIONS (7.4 in CBA 3) 57 4.2.1. Different parts of the co2 emissions calculation 59 4.3. B3 – RES INTEGRATION (7.5 in CBA 3) 60 4.4. B4 – NON-DIRECT GREENHOUSE EMISSIONS (7.6 in CBA 3) 62 4.5. B5 – VARIATION IN LOSSES (7.7 in CBA 3) 62 4.6. B6 – SOS – ADEQUACY (7.8 in CBA 3) 64 4.7. B7 – SOS – FLEXIBILITY (7.9 in CBA 3) 68 4.7.1. B7 – SOS – FLEXIBILITY (7.10 in CBA 3) 70 4.8. B8 – SOS – SYSTEM STABLITY (7.10 in CBA 3) 71 4.8. B8 – SOS – SYSTEM STABLITY (7.10 in CBA 3) 71 4.9. B9 – RESERVES FOR REDISPATCH POWER PLANTS (7.11 in CBA 3) 73 5.1. CAPEX (Cla, Clb) (7.12 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 6.8 ESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) 74 7.9 PROJECT LEVEL INDICATORS 75 <td>3.2.1. Net transfer capacity</td> <td></td>	3.2.1. Net transfer capacity	
4.1. B1 - SEW (7.3 in CBA 3) 50 4.1.1. Fuel savings due to integration of RES (SEW RES) 56 4.1.2. Avoided CO ₂ emission costs (SEW CO ₂) 56 4.1.3. Relation of the SEW-sub indicators to the total SEW 57 4.2. B2 - ADDITIONAL SOCIETAL BENEFIT DUE TO CO2 EMISSIONS (7.4 in CBA 3) 57 4.2. I.1. Different parts of the co2 emissions calculation 59 4.3. B3 - RES INTEGRATION (7.5 in CBA 3) 60 4.4. B4 - NON-DIRECT GREENHOUSE EMISSIONS (7.6 in CBA 3) 62 4.5. B5 - VARIATION IN LOSSES (7.7 in CBA 3) 62 4.6. 86 - SoS - ADEQUACY (7.8 in CBA 3) 64 4.7. B7 - SoS - FLEXIBILITY (7.9 in CBA 3) 64 4.7.1. B7.1 - Balancing energy exchange 68 4.7.2. B7.2 - Balancing capacity exchange 71 4.8. 88 - SoS - SPSYEM STABILITY (7.10 in CBA 3) 71 4.8. B8 - SoS - SYSTEM STABILITY (7.10 in CBA 3) 74 5.1 CAPEX (C1a, C1b) (7.12 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) 74 7. PROJECT LEVEL INDICATORS 75 <t< td=""><td></td><td></td></t<>		
4.1.1. Fuel savings due to integration of RES (SEW RES) .56 4.1.2. Avoided CO2 emission costs (SEW CO2) .56 4.1.2. Avoided CO2 emission costs (SEW CO2) .56 4.1.2. Relation of the SEW-sub indicators to the total SEW .57 4.2. B2 - ADDITIONAL SOCIETAL BENEFIT DUE TO CO2 EMISSIONS (7.4 in CBA 3) .57 4.2.1. Different parts of the co2 emissions calculation .59 4.3. B3 – RES INTEGRATION (7.5 in CBA 3) .60 4.4. B4 – NON-DIRECT GREENHOUSE EMISSIONS (7.6 in CBA 3) .62 4.5. B5 – VARIATION (7.5 in CBA 3) .62 4.6. B6 – Sos – ADEQUACY (7.8 in CBA 3) .62 4.6. B6 – Sos – ADEQUACY (7.9 in CBA 3) .64 4.7. B7 – Sos – FLEXIBILITY (7.9 in CBA 3) .68 4.7.1. B7.1 – Balancing capacity exchange/sharing. .70 4.8. B8 – Sos – SYSTEM STABILITY (7.10 in CBA 3) .71 4.9. B9 – RESERVES FOR REDISPATCH POWER PLANTS (7.11 in CBA 3) .73 5.1 CAPEX (C1a, C1b) (7.12 in CBA 3) .74 5.2. OPEX (7.13 in CBA 3) .74 5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) .74 5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) .74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) .74 7. PROJECT LE	4. BENEFIT INDICATORS (B1 – B9)	50
4.1.1. Fuel savings due to integration of RES (SEW RES) .56 4.1.2. Avoided CO2 emission costs (SEW CO2) .56 4.1.2. Avoided CO2 emission costs (SEW CO2) .56 4.1.2. Relation of the SEW-sub indicators to the total SEW .57 4.2. B2 - ADDITIONAL SOCIETAL BENEFIT DUE TO CO2 EMISSIONS (7.4 in CBA 3) .57 4.2.1. Different parts of the co2 emissions calculation .59 4.3. B3 – RES INTEGRATION (7.5 in CBA 3) .60 4.4. B4 – NON-DIRECT GREENHOUSE EMISSIONS (7.6 in CBA 3) .62 4.5. B5 – VARIATION (7.5 in CBA 3) .62 4.6. B6 – Sos – ADEQUACY (7.8 in CBA 3) .62 4.6. B6 – Sos – ADEQUACY (7.9 in CBA 3) .64 4.7. B7 – Sos – FLEXIBILITY (7.9 in CBA 3) .68 4.7.1. B7.1 – Balancing capacity exchange/sharing. .70 4.8. B8 – Sos – SYSTEM STABILITY (7.10 in CBA 3) .71 4.9. B9 – RESERVES FOR REDISPATCH POWER PLANTS (7.11 in CBA 3) .73 5.1 CAPEX (C1a, C1b) (7.12 in CBA 3) .74 5.2. OPEX (7.13 in CBA 3) .74 5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) .74 5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) .74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) .74 7. PROJECT LE		
4.1.2. Avoided CO ₂ emission costs (SEW CO ₂). 56 4.1.3. Relation of the SEW-sub indicators to the total SEW. 57 4.2. B2 - ADDTITONAL SOCIETAL BENEFIT DUE TO CO2 EMISSIONS (7.4 in CBA 3) 57 4.2.1. Different parts of the co2 emissions calculation. 59 4.3. B3 - RES INTEGRATION (7.5 in CBA 3). 60 4.4. B4 - NON-DIRECT GREENHOUSE EMISSIONS (7.6 in CBA 3). 62 4.5. B5 - VARIATION IN LOSSES (7.7 in CBA 3). 62 4.6. B6 - So5 - ADEQUACY (7.8 in CBA 3). 62 4.7. B7 - So5 - FLEXIBILITY (7.9 in CBA 3). 68 4.7.1. B7.1 - Balancing energy exchange 68 4.7.2. B7.2 - Balancing capacity exchange/sharing. 70 4.8. B8 - So5 - SYSTEM STABILITY (7.10 in CBA 3). 71 4.9. B9 - RESERVES FOR REDISPATCH POWER PLANTS (7.11 in CBA 3). 74 5.1 CAPEX (C1a, C1b) (7.12 in CBA 3). 74 5.2. OPEX (7.13 in CBA 3). 74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3). 74 7. PROJECT LEVEL INDICATORS 75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3). 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 77 9.1. CONTEXT 77 <tr< td=""><td></td><td></td></tr<>		
4.1.3. Relation of the SEW-sub indicators to the total SEW. .57 4.2. B2 - ADDITIONAL SOCIETAL BENEFIT DUE TO CO2 EMISSIONS (7.4 in CBA 3) .57 4.2.1. Different parts of the co2 emissions calculation. .59 4.3. B3 - RES INTEGRATION (7.5 in CBA 3) .60 4.4. B4 - NON-DIRECT GREENHOUSE EMISSIONS (7.6 in CBA 3) .62 4.5. B5 - VARIATION IN LOSSES (7.7 in CBA 3) .62 4.6. 66 - So5 - ADEQUACY (7.8 in CBA 3) .64 4.7. B7 - So5 - FLEXIBILITY (7.9 in CBA 3) .68 4.7.1. B7.1 - Balancing energy exchange .68 4.7.2. B7.2 - Balancing capacity exchange/sharing. .70 4.8. B8 - So5 - SYSTEM STABILITY (7.10 in CBA 3) .71 4.9. B9 - RESERVES FOR REDISPATCH POWER PLANTS (7.11 in CBA 3) .73 5. PROJECT COSTS .74 5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) .74 5.2. OPEX (7.13 in CBA 3) .74 5.4. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) .74 7. PROJECT LEVEL INDICATORS .75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) .76 9.1. CONTEXT .77 9.1. CONTEXT .77 9.1. CONTEXT .77 9.1. HYBRID INTERCONNECTOR DEFINIT		
4.2. B2 - ADDITIONAL SOCIETAL BENEFIT DUE TO CO2 EMISSIONS (7.4 in CBA 3) .57 4.2.1. Different parts of the co2 emissions calculation .59 4.3. B3 - RES INTEGRATION (7.5 in CBA 3) .60 4.4. B4 - NON-DIRECT GREENHOUSE EMISSIONS (7.6 in CBA 3) .62 4.5. B5 - VARIATION IN LOSSES (7.7 in CBA 3) .62 4.6. B6 - SoS - ADEQUACY (7.8 in CBA 3) .62 4.6. B6 - SoS - ADEQUACY (7.8 in CBA 3) .62 4.7. B7 - SoS - FLEXIBILITY (7.9 in CBA 3) .68 4.7.1. B7.1 - Balancing energy exchange .68 4.7.2. B7.2 - Balancing capacity exchange/sharing .70 4.8. B8 - SoS - SYSTEM STABILITY (7.10 in CBA 3) .71 4.8. B8 - SoS - SYSTEM STABILITY (7.10 in CBA 3) .73 5. PROJECT COSTS .74 5.1. CAPEX (CIa, CIb) (7.12 in CBA 3) .74 5.2. OPEX (7.13 in CBA 3) .74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) .74 7. PROJECT LEVEL INDICATORS .75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) .76 9. ASSESSMENT OF HYBRID Interconnectors .77 9.1. CONTEXT .77 9.1. CONTEXT .77 9.2. HYBRID INTERCONNECTOR DEFINITION		
4.2.1. Different parts of the co2 emissions calculation 59 4.3. B3 – RES INTEGRATION (7.5 in CBA 3) 60 4.4. B4 – NON-DIRECT GREENHOUSE EMISSIONS (7.6 in CBA 3) 62 4.5. B5 – VARIATION IN LOSSES (7.7 in CBA 3) 62 4.6. B6 – SoS – ADEQUACY (7.8 in CBA 3) 62 4.7. B7 – SoS – FLEXIBILITY (7.9 in CBA 3) 64 4.7. B7 – SoS – FLEXIBILITY (7.9 in CBA 3) 68 4.7.1. B7.1 - Balancing energy exchange 68 4.7.2. B7.2 - Balancing capacity exchange/sharing 70 4.8. B8 – SoS – SYSTEM STABILITY (7.10 in CBA 3) 71 4.9. B9 – RESERVES FOR REDISPATCH POWER PLANTS (7.11 in CBA 3) 73 5. PROJECT COSTS 74 5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) 74 7 PROJECT LEVEL INDICATORS 75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 77 9.1. CONTEXT 77 9.1. CONTEXT 77 9.2. HYBRID INTERC		
4.3. B3 - RES INTÉGRATION (7.5 in CBA 3)		
4.4. B4 - NON-DIRECT GREENHOUSE EMISSIONS (7.6 in CBA 3)	1	
4.5. B5 - VARIATION IN LOSSES (7.7 in CBA 3)		
4.6. B6 - SoS - ADEQUACY (7.8 in CBA 3)		
4.7. B7 - SoS - FLEXIBILITY (7.9 in CBA 3) 68 4.7.1. B7.1 - Balancing energy exchange 68 4.7.2. B7.2 - Balancing capacity exchange/sharing 70 4.8. B8 - SoS - SYSTEM STABILITY (7.10 in CBA 3) 71 4.9. B9 - RESERVES FOR REDISPATCH POWER PLANTS (7.11 in CBA 3) 73 5. PROJECT COSTS 74 5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) 74 7. PROJECT LEVEL INDICATORS 75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 77 9.1. CONTEXT 77 9.1. OUT-6-scope 78 9.2. HYBRID INTERCONNECTOR DEFINITION 80 9.3.1 CBA Option 1 80 9.3.2. CBA Option 1 80 9.3.3. NTCs 82 9.4. Project Promoter 83 9.4.1. Choice between CBA Option 1 versus 2 83 9.4.2. Data required for TYNDP 2022 83 9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERS		
4.7.1. B7.1 - Balancing energy exchange		
4.7.2. B7.2 - Balancing capacity exchange/sharing. 70 4.8. B8 - SoS - SYSTEM STABILITY (7.10 in CBA 3) 71 4.9. B9 - RESERVES FOR REDISPATCH POWER PLANTS (7.11 in CBA 3) 73 5. PROJECT COSTS 74 5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) 74 7. PROJECT LEVEL INDICATORS 75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 77 9.1. OUT-of-scope 78 9.3. HYBRID INTERCONNECTOR DEFINITION 80 9.3. I CBA Option 1 80 9.4.1. Choice between CBA Option 1 versus 2 83 9.4.2. Data required for TYNDP 2022 83 9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET 84		
4.8. B8 - SoS - SYSTEM STABILITY (7.10 in CBA 3) 71 4.9. B9 - RESERVES FOR REDISPATCH POWER PLANTS (7.11 in CBA 3) 73 5. PROJECT COSTS 74 5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) 74 7. PROJECT LEVEL INDICATORS 75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 77 9.1. OUT-of-scope 78 9.2. HYBRID INTERCONNECTOR DEFINITION 78 9.3. HYBRID INTERCONNECTION CBA CONFIGURATION 80 9.3.1. CBA Option 1 80 9.3.2. CBA Option 2 81 9.3.3. NTCs. 82 9.4.1. Choice between CBA Option 1 versus 2 83 9.4.2. Data required for TYNDP 2022 83 9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET 84		
4.9. B9 - RESERVES FOR REDISPATCH POWER PLANTS (7.11 in CBA 3) 73 5. PROJECT COSTS 74 5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) 74 7. PROJECT LEVEL INDICATORS 75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 77 9.1. OUT-of-scope 78 9.3. HYBRID INTERCONNECTOR DEFINITION 80 9.3.1. CBA Option 1 80 9.3.1. CBA Option 1 80 9.3.1. CBA Option 1 81 9.3. NTCs 82 9.4. Project Promoter 83 9.4.1. Choice between CBA Option 1 versus 2 83 9.4.2. Data required for TYNDP 2022 83 9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET 84	4./.2. B/.2 - Balancing capacity exchange/sharing	
4.9. B9 - RESERVES FOR REDISPATCH POWER PLANTS (7.11 in CBA 3) 73 5. PROJECT COSTS 74 5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) 74 7. PROJECT LEVEL INDICATORS 75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 77 9.1. OUT-of-scope 78 9.3. HYBRID INTERCONNECTOR DEFINITION 80 9.3.1. CBA Option 1 80 9.3.1. CBA Option 1 80 9.3.1. CBA Option 1 81 9.3. NTCs 82 9.4. Project Promoter 83 9.4.1. Choice between CBA Option 1 versus 2 83 9.4.2. Data required for TYNDP 2022 83 9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET 84	4.8. B8 – SoS – SYSTEM STABILITY (7.10 in CBA 3)	71
5. PROJECT COSTS 74 5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) 74 7. PROJECT LEVEL INDICATORS 75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 77 9.1. OUT-scope 78 9.2. HYBRID INTERCONNECTOR DEFINITION 78 9.3. HYBRID INTERCONNECTION CBA CONFIGURATION 80 9.3.1. CBA Option 1 80 9.3.2. CBA Option 1 80 9.4. Project Promoter. 83 9.4. Project Promoter. 83 9.4. Dice between CBA Option 1 versus 2 83 9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET 84		
5.1. CAPEX (C1a, C1b) (7.12 in CBA 3) 74 5.2. OPEX (7.13 in CBA 3) 74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) 74 7. PROJECT LEVEL INDICATORS. 75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 77 9.1.1. Why hybrid interconnector projects? 77 9.1.2. Out-of-scope 78 9.2. HYBRID INTERCONNECTOR DEFINITION 78 9.3. HYBRID INTERCONNECTOR DEFINITION 80 9.3.1. CBA Option 1 80 9.3.2. CBA Option 1 81 9.3.3. NTCs. 82 9.4.1. Choice between CBA Option 1 versus 2 83 9.4.2. Data required for TYNDP 2022 83 9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET 84		
5.2. OPEX (7.13 in CBA 3) 74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) 74 7. PROJECT LEVEL INDICATORS. 75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 78 9.2. HYBRID INTERCONNECTOR DEFINITION 78 9.3. HYBRID INTERCONNECTION CBA CONFIGURATION 80 9.3.1. CBA Option 1 80 9.3.2. CBA Option 2 81 9.3.3. NTCs 82 9.4.1. Choice between CBA Option 1 versus 2 83 9.4.2. Data required for TYNDP 2022 83 9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET 84		
5.2. OPEX (7.13 in CBA 3) 74 6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) 74 7. PROJECT LEVEL INDICATORS. 75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 78 9.2. HYBRID INTERCONNECTOR DEFINITION 78 9.3. HYBRID INTERCONNECTION CBA CONFIGURATION 80 9.3.1. CBA Option 1 80 9.3.2. CBA Option 2 81 9.3.3. NTCs 82 9.4.1. Choice between CBA Option 1 versus 2 83 9.4.2. Data required for TYNDP 2022 83 9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET 84	5.1. CAPEX (C1a, C1b) (7.12 in CBA 3)	74
6. RESIDUAL IMPACTS (7.15, 7.16 and 7.17 in CBA 3) 74 7. PROJECT LEVEL INDICATORS. 75 8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 77 9.1. CONTEXT 77 9.1. OUT-6-scope 78 9.2. HYBRID INTERCONNECTOR DEFINITION 78 9.3. INTERCONNECTION CBA CONFIGURATION 80 9.3.1. CBA Option 1 80 9.3.2. CBA Option 2 81 9.3.3. NTCs. 82 9.4.1. Choice between CBA Option 1 versus 2 83 9.4.2. Data required for TYNDP 2022 83 9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET 84		
7. PROJECT LEVEL INDICATORS		
8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 77 9.1.1. Why hybrid interconnector projects? 77 9.1.2. Out-of-scope 78 9.2. HYBRID INTERCONNECTOR DEFINITION 78 9.3. HYBRID INTERCONNECTION CBA CONFIGURATION 80 9.3.1. CBA Option 1 80 9.3.2. CBA Option 2 81 9.3.3. NTCs. 82 9.4. Project Promoter. 83 9.4.1. Choice between CBA Option 1 versus 2 83 9.4.2. Data required for TYNDP 2022 83 9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET 84	······································	
8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3) 76 9. ASSESSMENT OF HYBRID Interconnectors 77 9.1. CONTEXT 77 9.1.1. Why hybrid interconnector projects? 77 9.1.2. Out-of-scope 78 9.2. HYBRID INTERCONNECTOR DEFINITION 78 9.3. HYBRID INTERCONNECTION CBA CONFIGURATION 80 9.3.1. CBA Option 1 80 9.3.2. CBA Option 2 81 9.3.3. NTCs. 82 9.4. Project Promoter. 83 9.4.1. Choice between CBA Option 1 versus 2 83 9.4.2. Data required for TYNDP 2022 83 9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET 84	7. PROJECT LEVEL INDICATORS	
9. ASSESSMENT OF HYBRID Interconnectors779.1. CONTEXT779.1.1. Why hybrid interconnector projects?779.1.2. Out-of-scope789.2. HYBRID INTERCONNECTOR DEFINITION789.3. HYBRID INTERCONNECTION CBA CONFIGURATION809.3.1. CBA Option 1809.3.2. CBA Option 2819.3.3. NTCs829.4. Project Promoter839.4.1. Choice between CBA Option 1 versus 2839.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET84		
9. ASSESSMENT OF HYBRID Interconnectors779.1. CONTEXT779.1.1. Why hybrid interconnector projects?779.1.2. Out-of-scope789.2. HYBRID INTERCONNECTOR DEFINITION789.3. HYBRID INTERCONNECTION CBA CONFIGURATION809.3.1. CBA Option 1809.3.2. CBA Option 2819.3.3. NTCs829.4. Project Promoter839.4.1. Choice between CBA Option 1 versus 2839.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET84	8. ASSESSMENT OF STORAGE (4 and 7.18 in CBA 3)	
9.1. CONTEXT.779.1.1. Why hybrid interconnector projects?.779.1.2. Out-of-scope.789.2. HYBRID INTERCONNECTOR DEFINITION.789.3. HYBRID INTERCONNECTION CBA CONFIGURATION.809.3.1. CBA Option 1.809.3.2. CBA Option 2.819.3.3. NTCs.829.4.1. Choice between CBA Option 1 versus 2.839.4.2. Data required for TYNDP 2022.839.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET.84		
9.1. CONTEXT779.1.1. Why hybrid interconnector projects?779.1.2. Out-of-scope789.2. HYBRID INTERCONNECTOR DEFINITION789.3. HYBRID INTERCONNECTION CBA CONFIGURATION809.3.1. CBA Option 1809.3.2. CBA Option 2819.3.3. NTCs829.4.1. Choice between CBA Option 1 versus 2839.4.2. Data required for TYNDP 2022839.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET84	9. ASSESSMENT OF HYBRID Interconnectors	
9.1.1. Why hybrid interconnector projects?779.1.2. Out-of-scope789.2. HYBRID INTERCONNECTOR DEFINITION789.3. HYBRID INTERCONNECTION CBA CONFIGURATION809.3.1. CBA Option 1809.3.2. CBA Option 2819.3.3. NTCs829.4. Project Promoter839.4.1. Choice between CBA Option 1 versus 2839.4.2. Data required for TYNDP 2022839.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET84		
9.1.1. Why hybrid interconnector projects?779.1.2. Out-of-scope789.2. HYBRID INTERCONNECTOR DEFINITION789.3. HYBRID INTERCONNECTION CBA CONFIGURATION809.3.1. CBA Option 1809.3.2. CBA Option 2819.3.3. NTCs829.4. Project Promoter839.4.1. Choice between CBA Option 1 versus 2839.4.2. Data required for TYNDP 2022839.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET84	9.1. CONTEXT	77
9.1.2. Out-of-scope.789.2. HYBRID INTERCONNECTOR DEFINITION.789.3. HYBRID INTERCONNECTION CBA CONFIGURATION.809.3.1. CBA Option 1.809.3.2. CBA Option 2.819.3.3. NTCs.829.4. Project Promoter.839.4.1. Choice between CBA Option 1 versus 2.839.4.2. Data required for TYNDP 2022.839.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET.84		
9.2. HYBRID INTERCONNECTOR DEFINITION789.3. HYBRID INTERCONNECTION CBA CONFIGURATION809.3.1. CBA Option 1809.3.2. CBA Option 2819.3.3. NTCs829.4. Project Promoter.839.4.1. Choice between CBA Option 1 versus 2839.4.2. Data required for TYNDP 2022839.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET84		
9.3. HYBRID INTERCONNECTION CBA CONFIGURATION809.3.1. CBA Option 1809.3.2. CBA Option 2819.3.3. NTCs829.4. Project Promoter839.4.1. Choice between CBA Option 1 versus 2839.4.2. Data required for TYNDP 2022839.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET84		
9.3.1. CBA Option 1 .80 9.3.2. CBA Option 2 .81 9.3.3. NTCs .82 9.4. Project Promoter .83 9.4.1. Choice between CBA Option 1 versus 2 .83 9.4.2. Data required for TYNDP 2022 .83 9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET .84		
9.3.2. CBA Option 2		
9.3.3. NTCs		
9.4.1. Choice between CBA Option 1 versus 2839.4.2. Data required for TYNDP 2022839.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET84		
9.4.1. Choice between CBA Option 1 versus 2839.4.2. Data required for TYNDP 2022839.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET84	9.4. Project Promoter	83
9.4.2. Data required for TYNDP 2022		
9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET		
	Amoung	05

GUIDELINES

entsoe

Draft version 3 June 2021	
I. Quantitative assumptions	85
A. General assumptions	
B. CO2 emission per type	
C. Non-CO ₂ emission factors	
D. project standard costs	89
II. Reference grid: List of projects	91
III. PEMMDB generation categories	97
IV. PointS in times for Load-Flow calculations	98
V. examples of Project Level Indicators calculations	99
A. B7.1 Balancing energy exchange	99
B. B9 reduction of necessary reserve for re-dispatch power plants	102

Draft version | 3 June 2021

1. INTRODUCTION AND SCOPE

The Implementation Guidelines provide complementary information to the <u>3rd ENTSO-E</u> <u>Guideline</u> for Cost Benefit Analysis of Grid Development Projects</u> (–"3rd CBA guideline"). They do not replace it. For a full understanding of these Implementation Guidelines, it is strongly recommended that the reader familiarise themselves with the 3rd CBA guideline. Only in combination do both documents deliver the necessary information to practically perform a project CBA in the ENTSO-E Ten-Year Network Development Plan (TYNDP) 2022. Information not explicitly noted in the Implementation Guidelines has to be considered with respect to the 3rd CBA guideline.

These guidelines for the TYNDP 2022 are drafted under the requirement of being made public, together with the TYNDP 2022 package, as demanded by the 3rd CBA Guideline. The structure of the 3rd CBA guideline follows a general and modular approach. It explicitly refers to and relies on the study specific implementation guideline (i.e. for the TYNDP 2022 these present guidelines):

- a. It is modular as each individual indicator or aspect within the 3rd CBA guideline is presented as an individual module. This approach allows ENTSO-E to include small changes or revise/add/revoke single indicators in a clearer manner without changing the entire document.
- b. It is more general as very specific details or assumptions needed for applying the CBA guidelines are pushed to the Implementation Guidelines while the CBA relies on the main concepts.

Therefore, the Implementation Guidelines must fulfil different requirements, as described below.

For the application of the CBA, the reader should also make use of:

<u>3rd ENTSO-E Guideline for Cost Benefit Analysis of Grid Development Projects (Submitted to EC</u> 22.03.2021)

Draft TYNDP 2022 Scenario Report

Key drivers of the methodology:

- 1. Complementing the guidance as given in the 3rd CBA Guideline
- 2. Delivering the methodology for assessing projects with and without a major impact on trading capacities
- 3. Alignment between results and tools in order to create comparable results
- 4. Transparency regarding the methods, assumptions and models used within the TYNDP project assessment

Main changes compared to the Implementation Guidelines TYNDP 2020:

ENTSO-E is constantly improving and extending the scope for the CBA assessment. Given the official approval process and complex development process of new methods, it is not always possible to include all these changes in the respective update of the CBA Guidelines for each subsequent TYNDP. Hence, these Implementation Guidelines can, therefore, also be seen as an

GUIDELINES

Draft version | 3 June 2021

intermediate step between the last approved CBA Guideline and its next update, whereby the new methods introduced within the Implementation Guidelines and tested for the first time within the TYNDP 2022 will act as the basis for further improvements and developments.

Although not part of the 3rd CBA Guideline, for the TYNDP 2022, ENTSO-E has further worked on including additional methodologies and concepts. Besides additional explanation, streamlining the whole document and error corrections, the main changes since the TYNDP 2020 Implementation Guidelines are as follows:

- For the first time, ENTSO-E has developed and included in these Implementation Guidelines a method for the assessment of "Hybrid Projects" (section 9)
- For the first time in the TYNDP, the interlinkage between the electricity and the gas sector is assessed under the use of a distinct indicator (section 2.6)
- The merging of the general Implementation Guidelines, the Guidelines for RD (section 2.4) calculations and the assessment of project level indicators (section 7)
- Detailed examples are included for project level indicators (annex V)

Disclaimers:

- The approval process of the 3rd CBA Guideline in compliance with the Commission Regulation (EU) 347/2013 has been started by submitting the guideline to ACER on 28 January 2020. After having received the Agency's opinion 03/2020 on 6 May 2020 and the European Commission's opinion C(2020)8975/1 on 22 December 2020, ENTSO-E (DT CBA) updated the guideline based on the comments received. On 22 March 2021, ENTSO-E submitted the updated version to the Commission for final approval. ENTSO-E has, until publication of the TYNDP 2022 Implementation Guidelines, not received EC approval or refusal. This implies that the 2nd CBA Guideline denotes the latest version approved by the EC. However, as for the TYNDP 2020, the TYNDP 2022 will be based on the updated 3rd version of the CBA Guideline submitted to EC for approval. This, however, implies that changes within the final approved CBA Guideline might need to be also translated to the Implementation Guidelines later in 2022.
- It should be noted that the newly introduced indicators/concepts presented in these Implementation Guidelines have not yet undergone excessive testing and will be applied to the TYNDP 2022 for the first time. Their application to the TYNDP 2022 can therefore be seen as a test case and might, therefore, be subject to further changes and updates before being implemented in the next update of the CBA Guideline. This mainly applies to:
 - $_{\odot}$ The assessment of the commissioning dates (section 2.5) $_{\odot}~$ The

interlinkage between the electricity and gas sectors (section 2.6) o The

assessment of "hybrid interconnectors" (section 9)

Draft version | 3 June 2021

2. MODELLING FRAMEWORKS

The figure below outlines the project assessment process, including market and network simulations, and the link between the two.

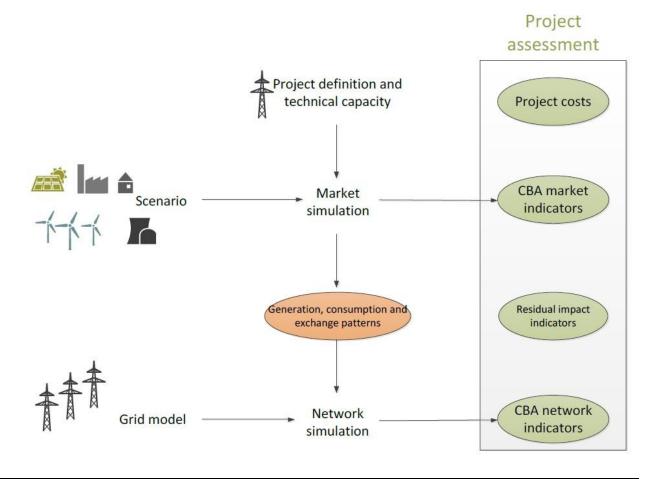


Figure 1 – Role of market and network simulations with respect to the CBA indicators of a TYNDP project assessment

This section delivers a detailed overview of the respective steps as shown in Figure 1.

To consider the interlinkage between the gas- and electricity sector, a method has been introduced to evaluate the impact of produced hydrogen on the socioeconomic welfare (SEW).

In addition, as a pilot process parallel to the TYNDP 2022, an overarching framework is used to assess gas and electricity projects. To capture their cross-sectorial coupling impacts, the gas and electricity sector is interlinked. Projects that introduce a significant coupling undergo a dual assessment, which will be part of this pilot study. This is shown in Figure 2, where the joint scenarios are the input for the dual assessment. The adjusted SEW method and the dual assessment methodology is based on a joint study in which ENTSOG and ENTSO-E developed methods to assess the cross-coupling impacts of gas and electricity projects on the gas and electricity sector.

GUIDELINES

Draft version | 3 June 2021

However, concerning the CBA assessment within the electricity TYNDP 2022, the ENTSO-E part is illustrated with the yellow boxes and is further described in Section 2.6.



Figure 2: Assessment of gas and electricity projects in one overarching framework by interlinking the gas and electricity sector. Only the yellow part is content to be tested in the TYNDP 2022 and will be described within these Implementation Guidelines.

2.1. SCENARIOS (2.1 in CBA 3)

An overview of the scenarios, their storylines, main data points and definitions as applied to the TYNDP 2022 can be found in the <u>Draft TYNDP 2022 Scenario Report</u>.

In the TYNDP 2022, the scenarios defined within the scenario building process are NT2030, DE2030, GA2030, CT2030, NT2040, DE2040 and GA2040. In this context, it is important to note that the market CBA is calculated for the scenarios as shown in the table below, and the full CBA is only performed for the NT2030 scenario, meaning that this is the only scenario in which load flows and other network calculations are carried out.

Adequacy assessments are only prioritised to the NT2030 scenario.

An overview of the indicators calculated for the respective scenarios is provided in the table below:

The climate years have been selected based on their representativeness out of 30 climate years within the Pan-European Climate Database (PECD). The results from market simulations are then considered based on the weighted average from these three climate years. The weighting is as follows: 0.233 for 1995, 0.367 for 2008 and 0.4 for 2009.

The table below gives an overview of which scenario the CBA indicators and Δ NTC calculations are to be performed in.

Draft version | 3 June 2021

European Network of Transmission System Operators for Electricity

Scenario	B1, B2, B3, B4	B6 – Adequacy	B5 – Losses	ΔΝΤϹ
NT2030 Climate years	Yes 1995, 2008, 2009	Yes ¹ Synthetic MC years	Yes 1995, 2008, 2009	No
DE2030 Climate years	Yes 1995, 2008, 2009	No	No	No
GA2030 Climate years	No	No	No	No
NT2040 Climate years	Yes 1995, 2008, 2009	No	No	No
DE2040 Climate years	Yes 1995, 2008, 2009	No	No	No
GA2040 Climate years	No	No	No	No
CT2030	No	No	No	No

¹ To ensure "realistic LOLE levels" for TOOT projects, the NT2030 scenario has been adjusted following the principles laid down within the 3rd CBA Guideline - this adjustment has just been applied for the SoS calculations.

2.2. MARKET SIMULATIONS (2.4 in CBA 3)

2.2.1.Tools used for market simulations

The TYNDP project assessment should report costs and benefits on a pan-European level due to market and network simulations. The tools used for market simulations are:

- Antares <u>link</u>
- PowrSym <u>link</u>
- Plexos <u>link</u>
- Promed (internal tool)
- APG Tool (internal tool)
- BID3 link

2.2.2. Generation cost and total surplus approach

Market simulations for assessing indicators B1-B2-B3-B4 can rely on two possible approaches: the generation cost approach or the total surplus approach. Both are elaborated in the 3rd CBA Guideline in Annexes I and II.

- The **generation cost approach** compares the generation costs with and without the project for the different bidding areas. This approach can be used for inelastic (i.e. fixed demand in each time step) demand only;
- the **total surplus approach** compares the producer and consumer surpluses for both bidding areas as well as the congestion rent between them, with and without the project. This approach is capable of dealing with both elastic and inelastic demand.

Depending on the used market tool, the SEW for the projects connecting Countries included within the ENTSO-E perimeter is calculated using the generation cost approach. In the event of inelastic demand – which is the case for the modelling used in TYNDP 2022 – the two approaches give the exact same results. Third countries are calculated using the total surplus approach (see below).

The elasticity of the demand is modelled as demand side response (DSR) the same manner as generators are modelled – this does not impact the validity of the generation cost approach.

2.2.3. Treatment of 'third countries'

The geographic perimeter for benefit and cost reporting in the TYNDP is defined as covering countries from ENTSO-E, as well as observer member Turkey. Hence, this excludes countries as defined below.

This ENTSO-E perimeter is connected to non-member countries – so called third countries – in which costs and benefits may arise. It is therefore necessary to properly consider the benefit allocation because project benefits that arise in third countries should, in principle, not be counted as a pan-European benefit and should be excluded from the TYNDP assessment. The simulated costs and benefits may therefore need to be adjusted to account for the effects created in third countries (i.e. remove these effects when reporting a value).

Draft version | 3 June 2021

Therefore, in the TYNDP assessment for projects that are connecting third countries (for example Tunisia, Libya, Egypt, Israel), the SEW is calculated with the use of the total surplus approach. As the total surplus approach gives the SEW components on the market node level, it is possible to get rid of benefits related to these third countries. The benefit is then reported separately for the ENTSO-E perimeter and for third countries.

2.2.4. Geographical scope of the market model

The geographic perimeter for the market model is defined as ENTSO-E countries and the following connecting third countries:

Ukraine, Great Britain, Tunisia, Libya, Morocco, Israel, Palestine, Egypt and Algeria.

The country Georgia is only modelled for one specific project. The TYNDP project assessment should report costs and benefits on a pan-European level. As described in Section 2.2 the costs and benefits need to be adjusted to account for the effects that are created in third countries. To remove the effects on third countries, projects connecting with them should use the total surplus approach. In contrast, but for the same reason, pan-Europe interactions between Russia are modelled as "fixed exchanges" in the market simulation.

2.2.5. Generation unit data

All assessments in the TYNDP 2022 use a common ENTSO-E database as defined within the Pan-European Market Modelling Database (PEMMDB) version 2.3. As the market simulations are carried out on the full pan-European perimeter plus third countries (see 2.2.4) a reduction in complexity has to be done to reduce the memory usage during the computations. Therefore, the modelling data based on the generator resolution (where detailed information per generator is given) is reduced to generation categories. This is done by merging each generator with comparable properties to one category (e.g. Nuclear, Lignite old 1, Lignite old 2 etc.). The full list of used categories is given in Annex II.

2.2.6. Modelling assumptions

The market simulation uses the following input data²:

- ENTSO-E's PEMMDB 2.3 package covering:
 - o Prices
 - Net generating capacities for all generating types
 Pre-defined generation time series
 Net
 Transfer Capacities (NTC)
 Must-run values of
 thermal generation types

² This terminology is consistent with other ENTSO-E documents and published data. Wherever this document refers to a market model, it covers in general all these items.

GUIDELINES

Draft version | 3 June 2021

- Availabilities of thermal units

 Inflow profiles for Run-of-Rivers and pump storages
 DSR capacities
- Demand profile time series for all market nodes, per climate year and scenario;
- PECD covering solar irradiance, wind generation, ambient temperature and hydro inflow data per climate year and scenario; and
- Planned and forced outage time series
- Costs for generation:
- Cross-border capacities (NTC values)
- Fixed exchanges with non-modelled countries

2.2.7. Time-resolution

The market simulations are performed for 8736 hourly steps starting with Monday to have exactly 52 weeks. This is useful as most tools apply weekly optimisations.

2.2.8. Climate years

The climate years considered for TYNDP 2022 market simulations are 1995, 2008 and 2009. For each climate year, the factors from the Pan-European Climate Database (PECD) are used to calculate the production of Wind Onshore, Wind Offshore, Solar PV and Solar CSP on an hourly basis for each market node. These time-series are the input for the market simulations. This renewal infeed may be restricted by the export capacities or demand during the market simulation, which leads to dumped energy in the results. In the case of hydro power plants with natural inflow, hourly inflow data is used, which also depends on the climate year. In TYNDP 2022, part of Other RES and Other non-RES generation, also depends on the climate year.

2.2.9. Hurdle costs

A hurdle cost of 0.01 €/MWh is applied in TYNDP 2022, which is the same as in the previous TYNDPs 2018 and 2020.

Note: A hurdle cost is a cost over the energy flowing through a line (like a small fee) and could be used to incentive the dispatch of local resources when thermal generators located in different zones have the same marginal costs. Most importantly, the hurdle cost is included as a model parameter to mitigate unrealistic high flows over long distances and facilitate the convergence of the model.

The hurdle costs need to be very small to avoid a distortive impact on the merit order of thermal units as well as system costs (the overall hurdle costs impact in the simulation should be negligible).

GUIDELINES

Draft version | 3 June 2021

2.3. NETWORK SIMULATIONS (2.4 in CBA 3)

2.3.1. Merging of the Grid Models

All load-flow simulations for merging the grid models are performed on models collected from TSOs for the NT 2030 scenario in ENTSO-E Common Grid Model Exchange Specification (CGMES)³ format, for reference hours selected from a base case market simulation output for the given scenario. These national models are merged to larger regional models, which are used in the TYNDP network studies. The reference hour is selected with the aim of minimising the exchanges in Europe, in order to help the convergence of the merged models. These merged models can then be used for year-round CBA simulations in which generation and loads are redistributed for every point in time based on the market simulation results.

The collected grid models have to match the PEMMDB 2.3 installed capacities for every TSO, and contain a mapping of each grid node to the corresponding market node. Merged models for the different synchronous areas are built by TSOs for their own simulation tools that participate in the CBA calculations in the TYNDP Study Team. The load-flow results are then compared, and necessary fixes are done in each tool in case of discrepancies before starting the simulations. The following tools are used:

ΤοοΙ	Merged Model	Link to description
Convergence	Continental Europe	link
Integral	Continental Europe	link
PSS/E	Continental Europe, Baltics, Nordics	link
PowerFactory	Continental Europe, Great Britain	link

Convergence is a network simulation tool developed and used by RTE. Integral is used by the German TSOs and APG. The rest of the tools are commercially available and used by several TSOs. The usage of these tools was determined by the available resources from the TSOs for participation in the calculations in the framework of the TYNDP Study Team.

2.3.2. Mapping the market simulation results to the network models

The market and network models applied in the TYNDP have a different geospatial granularity. The market models cover in general bidding zones (market nodes), but their outcome feeds into grid models which have a more detailed level and cover all individual nodes.

The network models collected by ENTSO-E contain all the information required to map the market simulation results, namely the identification of all grid parts corresponding to a market node, and

³ https://www.entsoe.eu/digital/cim/cim-for-grid-models-exchange/

Draft version | 3 June 2021

the association of each generator to the relevant PEMMDB category. The market simulation results per hour are mapped in the following manner:

- Mapping of generation for each modelled market node: The market simulation results contain the total generation for each PEMMDB category (e.g. Combine Cycle Gas Turbine [CCGT] Present 1, Lignite Old 1, Wind Onshore etc., see section 2.2) per market node. Hence, it is not possible to directly allocate the generation pattern to each single generator whereas the network model needs this information on a generator level/resolution. The PEMMDB categories are therefore mapped to all generators of the given category corresponding to the given market node in proportion to their maximum active power. In the case of pumping/charging, the negative generation is mapped to all such units within the given category in proportion to their (negative) minimum active power. Dump energy is reported for all renewable types as one value in the market outputs, therefore the order to subtract it from the generation from such types had to be defined for network simulations. The sequence is the following: wind onshore, wind offshore, solar PV, solar thermal.
- Exchanges with non-modelled countries: The exchanges with non-modelled countries are mapped directly to the appropriate boundary nodes as injections. Whether these connections are Alternating Current (AC) or High Voltage Direct Current Connections (HVDCs), the mapping to each boundary node per border is done in proportion of the capacity of each line.
- HVDC setpoints: HVDCs can be modelled in different manners in the TYNDP grid models. In the case
 of HVDCs within a country (market node), AC emulation (defined as a K [MW/°] factor provided by
 the TSO) is used. In the case of borders that consist of both AC lines and HVDCs, either a formula is
 defined to calculate the HVDC setpoints in function of the exchange value from the market
 simulation, or AC emulation is used here as well (it is up to the relevant TSOs). If a border consists
 of HVDC(s) only, the exchange is mapped directly (in proportion of the capacities of the HVDCs, if
 there is more than one).
- **Balances:** As the demand for each market node in the market simulation contains losses, the demand values cannot be mapped to the loads in the grid model directly. Instead, the balance of each market node is set after fixing the generation and the directly mapped exchanges by scaling the loads. In this manner, the total load plus the losses remains equal to the demand value from

the market simulation. Loads represented by the NonConformLoad⁴ class in CGMES are to be kept at their initial value throughout the year, without taking part in the scaling. All other loads that are represented by ConformLoad or EnergyConsumer classes are to be scaled.

The merged base case models (base case relates here to a specific reference PiT) are available in each simulation tool with an AC load-flow solution. However, due to the computational limitations of some of the tools, or other issues caused by unreliable forecasted data for reactive loads or the lack of harmonised voltage control strategies, DC load-flow approximation may also be used⁵ for the following steps, i.e. losses and NTC calculations.

⁴ In the CGMES standard, the NonConformLoad class is used to represent loads that do not show a daily pattern, whereas ConformLoad is used to represent normally scaling loads. EnergyConsumer is a generic class to represent loads; in the TYNDP simulations, it is treated in the same manner as ConformLoads.

⁵ As an AC load-flow for large power systems requires typically more iterations to converge towards a solution and higher computation times for calculating Jacobians in each iteration, an AC load-flow exhibits computational

Draft version | 3 June 2021

From the tools used for load-flow simulations within the TYNDP 2022, only Integral is able to perform full AC computations.

The load-flow simulations are all based on market simulation outputs, which are produced in an Excel file with a standardised structure and content.

2.3.3. Improving DC calculations using results from AC calculations

Some methods can be utilised to improve the accuracy of DC load-flow results, which were investigated and commonly agreed for TYNDP 2020. The applied methods are the following:

- Usage of voltages based on AC load-flow result in the formula for losses from DC results instead of base (nominal) voltages for the voltage levels that can be found commonly in the European grid. The values used are described in the section for losses calculations.
- The assumption of cos(φ) is verified by results from AC load-flow, performed by Integral. The value can be adjusted based on the results.
- Dispersal of losses in the loads is considered as the demand values from the market simulation already contain assumed losses for each market area.

After detailed load flow tests carried out in TYNDP 2020, it was identified that many other uncertainties are making the comparison between AC and DC load flow approaches very difficult. The comparison between the different network simulation tools showed that the issues in the modelling, topology, mapping of market outputs and specifics of the tools have an essential impact on the load flow results and, therefore, on losses results. The identifying and fixing of these issues are crucial to ensure the robustness of the comparison of network calculations. The following tasks could be applied in the CBA process:

- Quality checks of prepared network models have to be done before the CBA phase to identify the issues in the network models and ensure the good comparability of load flow results between network simulation tools used for the losses computations
- Improvement of voltage profiles:
 - The target voltage level should be harmonised in the considered areas to ensure realistic voltage profile compliant with operational rules
 - The parameters of voltage control mode have to be defined in the network model for AC load flow calculations (target value, min/max range etc.)
 The DC voltage pattern should be customised using the results of AC load flow

Considering the recommendations above, the power flow results and thus the results of losses computations in AC and DC approaches should be well aligned. **The performed analysis proved**

limitations. Moreover, the AC load-flow applied to large power systems could lead to convergence issues. A DC load flow approximation is convergent by definition and brings the complexity to a manageable level at a reasonable deviation in accuracy.

GUIDELINES

Draft version | 3 June 2021

that the DC power flow with customise voltage pattern approach is sufficient for long term studies as well as the AC power flow approach.

2.3.4. Geographical scope of the grid models

As described in Section 2.3.1, the market simulation results are mapped to separate merged grid models representing different synchronous areas. The grid models do not contain following countries/areas: Cyprus (CY00), Corsica (FR15), Iceland (IL00), Israel (IS00), Malta (MT00), Tunisia (TN00) and Turkey (TR00).

2.3.5. Sanity check of the different tools

Before starting the load-flow calculations, all simulators for the same synchronous area must ensure that the AC load-flow results are adequately close⁶ for the base case merged model. In addition, to ensure that all modelling rules for year-round calculations are implemented in the same manner, hourly load-flow results for a selected market simulation output need to be compared, as well as AC and DC load-flow results for selected hours of the same market output.

In the event the AC load-flow is used (only for Integral), the loads in each modelled market area have to be scaled to reach the correct balance from the market output as the demand values in the market simulations represent the actual loads plus the losses in the given area (meaning that the demand values cannot be used directly). The AC solution should be obtained by respecting the reactive limits of the generators.

In TYNDP 2022, AC load-flow can only be utilised for CBA calculations by Integral users (German TSOs and APG). To reach convergence, fictitious reactive compensator elements have to be added to the grid. The amount and placement of these elements may depend not only on the market simulation tool from which the output is used but also on the climate year of the otherwise same market run.

2.3.6. Organisation of the modelling

The distribution of each project to a given simulator was done based on the available TSO resources. This was done centrally in the TYNDP Study Team, with results being directly reported to the Study Team, instead of running the simulations based on regional teams. Whereas the models for smaller synchronous areas outside Continental Europe (e.g. Nordics) were used by simulators from TSOs from those areas, the results were compiled for all synchronous areas centrally for each project.

2.3.7. Load-Flow calculations for the CBA-phase

All losses calculations are based on year-round simulations utilising the market simulation results for all 8736 hours of the climate years 1995, 2008 and 2009.

⁶ Tests have been performed to align the results from the models.

GUIDELINES

Draft version | 3 June 2021

2.3.8. Load-Flow calculations for NTC calculations

For Δ NTC calculations, only one market output for a given climate year will be used.

A detailed description of the transfer capability calculations is given in section 3.2.

Additional modelling information on NTC calculations will be given in a separate document to be published with the TYNDP 2022 package later in the process. This will include an overview (per project) of:

- the used Tool
- whether load shift or generation shift has been used
- whether year-round simulations or points in time have been used

2.4. REDISPATCH SIMULATIONS (2.4 and 7.19 in CBA 3)

2.4.1. Introduction and purpose of redispatch

Assessing projects by just focusing on the impact of transfer capacities across certain international borders can lead to an underestimation of the project specific benefits because projects can also show significant positive benefits that cannot be covered by only increasing the capacities of a certain border, i.e. the reduction of internal congestions. This effect is strongest but not limited to internal projects that do not necessarily aim to increase the capacities across specific borders, which makes it difficult or even impossible to solely assess them by market simulations. To close this gap of incomplete benefit calculation for internal projects, within the 2nd CBA guideline the use of redispatch simulations has been introduced. The main aim of introducing this methodology was to get the best link to reality, as within some countries redispatch has already become a standard procedure of dealing with internal congestions.

Following its current application in reality, the redispatch simulations must be based on detailed market and subsequent load flow simulations. As it is not possible for the moment to calculate the whole toolchain, especially the redispatch simulations itself, on a common tool and/or on ENTSOE wide level, these Implementation Guidelines need to focus on a detailed methodology description, its main principles and an alignment of the most important parameters.

In TYNDP 2022, redispatch simulations will not be applied for interconnectors. Only for internal projects with and/or without cross-border impact, where the respective project promoter can prove that the tool and methodology used is compliant with the 3rd CBA guideline and this implementation guideline, redispatch calculation can be performed. The project promoter has to submit a written acknowledgement in English language to ENTSO-E to prove compliance with the requirements of the CBA guideline.

Note with respect to the guidelines on project level indicators:

Draft version | 3 June 2021

Within section 0 Project Level Indicators, only specific indicators are described, whereas the redispatch methodology is used to achieve the same indicators as by the use of market simulations. It is thus not a description of how to assess specific indicators but instead on how the redispatch methodology can be applied to achieve the respective indicators.

2.4.2. Main objectives of the Implementation Guidelines of the

Redispatch Assessment

As it is not yet possible to perform the redispatch simulations on a centralised level at ENTSO-E within the TYNDP 2022, these guidelines aim to provide all the necessary descriptions and definitions to allow project promoters to perform the redispatch simulations on their own (presupposing the respective tools are available). These guidelines should thus provide everything needed at hand for the modellers to be able to produce comparable results. The main goal should be to achieve the highest degree of comparability between the results achieved by the different tools and simulators.

It is, therefore, of major importance to define the **main parameters** and align them between the different tools and modellers. This is crucial as all models need to be based on a comparable data foundation, but on the other hand it might be the case that a specific parameter needed for the one tool might not be used in another. To find the best possible alignment, a detailed comparison between the different tools used for modelling the redispatch inside the ENTSO-E TSOs has already been performed in preparation for the TYNDP 2020. The results of this exercise are provided in the following chapters.

Project promoters aiming for redispatch calculations within the TYNDP 2022 that have not participated within the alignment process in TYNDP 2020 have to, in addition, prove their model compliance by performing the sanity check as described within section 2.4.4. In this case, the project promoter has to submit the results of the sanity check together with a written acknowledgement in English language to ENTSO-E to prove compliance with this requirement.

The definition of the **general principles** of the different tools is also part of the alignment process and will be presented here. This includes, e.g. the determination of the sequence of generation units to be used for redispatch.

For this purpose, in chapter 2.4.3 an overview of the general process is given. After giving the minimal requirements on quality in chapter 2.4.4 that need to be met, the participating tools are presented in chapter 2.4.6, together with a description of the test case to find alignment between the tools. As the redispatch methodology is based on market and network simulations, the needed input data is described in chapter 2.4.7, including a description of model specific data per simulation tool. An overview of the overall CBA assessment framework for the redispatch simulations, such as the number of climate years, TOOT/PINT (Take out one at a time, put in one at a time) methodology etc. and the definition of the model perimeter, is given in chapters 2.4.8 and 2.4.9. A detailed overview of the optimisation measures, such as the order of sequence of generation units used for redispatch, possible penalty costs, the objective function etc. is given in chapter 2.4.10, followed by the definition of the critical branches to be considered when performing the redispatch simulations in chapter 2.4.11. The final two chapters, 2.4.12 and 2.4.13, give an overview of the results needed for a full CBA assessment and its monetisation.

Draft version | 3 June 2021

Ultimately, in the best case, these Implementation Guidelines might be seen as step-by-step guidelines for assessing projects using redispatch simulations, but at least they shall act as a source for all the needed information for simulators to perform the redispatch simulations in a consistent manner.

2.4.3. Overview of the simulation process

All redispatch calculations performed by the project promoters need to follow the principles laid out within the 3rd CBA guideline (section 7.19).

In this section, a short overview of the general simulation process of redispatch calculations is given. This does not include the detailed specifics that might be considered as defined by the respective tools. An overview of the used tools is given in section 2.4.6.

Although no interconnectors will be assessed using redispatch calculations within TYNDP 2022, both options as given in the 3rd CBA guideline (see also Figure 3) can be applied dependent on the cross-border contribution of the respective project:

- Option 1: Calculation of benefits using pure redispatch
- Option 2: Calculation of benefits using a combination of border-NTC-variation and redispatch

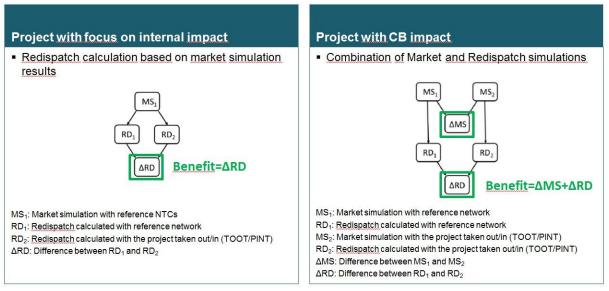


Figure 3: Simplified presentation of the two options applied for projects with a focus on internal impact only and those with internal and cross-border impact respectively.

Choice of respective methodology:

Draft version | 3 June 2021

The choice of what method to be used is for the project promoter. However, in the end, within the TYNDP project sheets the chosen method needs to be displayed, together with a justification of the respective choice.

In general, projects with no cross-border contribution will be assessed using Option 1, whereas those with cross-border impact are assessed using Option 2. However, also for the latter, project promoters might wish to only use redispatch calculations e.g. to reduce the complexity of the simulations, or as the focus relies on internal effects only. It should be noted that in that case, the cross-border part of the benefits will be lost and the results can be seen as a lower bound. On the other hand, the application of Option 2 for projects with no cross-border impact will deliver the same results as when using Option 1.

Overview of the simulation process:

Generally, to perform the project assessment using redispatch simulations, the following simulation steps must be performed⁷:

- 1. **Market Simulations (see also 2.4.7.1):** all subsequent simulations must be based on the centrally performed market simulations by ENTSO-E. The respective data must be obtained by the TYNDP Study Team.
- 2. Load Flow Calculations (see also 2.4.7.2): the following load flow simulation must be based on the grid models as prepared by the TYNDP Study Team.
- 3. **Redispatch Simulations:** the redispatch simulations must be based on the principles and requirements as defined in these guidelines and executed by the respective project promoter.
 - a. all grid models must be based on the models prepared by the TYNDP Study Team
 - b. all marked data must be in line with the data as used by the TYNDP Study Team

Note: As for the load flow and redispatch simulations, a fuel type based resolution is not sufficient, the market simulation from step 1. needs to be broken down on a generator level – whereby the infeed of each single generator/power plant is given and not its aggregation per fuel type. The geographical scope for this disaggregation has to be the same as defined for the redispatch simulations in this guideline.

2.4.4. Sanity check for minimum modelling requirements

The project promoter has to perform the simulations for the calculation of the indicators based on the redispatch method. The TYNDP Study Team does not perform calculations for projects based on the redispatch method. However, compliance with the redispatch guideline and a minimum quality of the calculations should be granted.

For this reason, the project promoter is requested to participate in the sanity check by performing detailed redispatch calculations using a highly simplified network model with a strongly reduced number of artificial market simulation results. The project promoter submits the results at least together with the final project results to ENTSO-E. The respective experts compare the results of

⁷ These steps might be performed using a single tool or a combination of different tools, but none must be neglected.

Draft version | 3 June 2021

the project promoter regarding the simplified model. The submission of the Sanity Check results should occur before the submission of the final project results to ENTSO-E. This is a recommendation as a recalculation may not be possible in the given timeframe of the publication process of the TYNDP. The approval process of the redispatch results by the project promoter will be communicated by ENTSO-E separately.

For tools that have already performed the sanity check in the TYNDP 2020, there is no need to re-submit the results from the sanity check to ENTSO-E.

The following tables give the description of the input data for the sanity check in the RD-Annex (section 2.4.14):

- Technical parameters
- Market Input Data
- Template for the results

The input data of the sanity check model covers all processes and methods necessary for the redispatch calculation. However, only minimal resources are required for the project promoter to generate it.

A Brief description of the model:

The sanity check model consists of six nodes (N=North, S=South, W=West & E=East). All nodes are connected by a 2-system 380 kV overhead line connection in ring topology. The phase shifter transformer (PST) NW_NE_1 is located between the nodes NW and NE. There are two HVDC connections (HVDC1, HVDC 2) between node SW and SE. Four generation units or feeder and three load units are located in the model. Generation unit N_G is located in node N. Two generation units SW_G1 & SW_G2 and one load SW_L are located in node SW. Two load units SE_L1 & SE_L2 and one generation unit SE_G are located in node SE. (See also Figure 4

Draft version | 3 June 2021

Illustration of the Sanity Check model.)

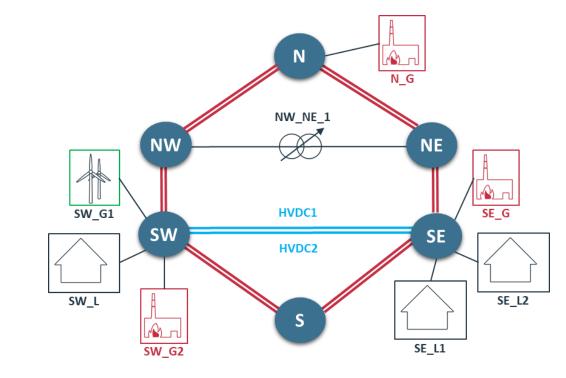


Figure 4 Illustration of the Sanity Check model.

The generator SW_G1 is an onshore wind turbine. All other generation units are thermal power plants of type CCGT new. The HVDC connections and the PST have default penalty/ marginal costs too, see the RD-Annex (section 2.4.14). As the sanity check is a check of the detailed results for one day, only the order of the redispatch is important. All further input details can be taken from the guideline itself.

2.4.5. Additional information to be delivered by the project promoter

The project promoter needs to give a written statement on:

- The compliance with the 3rd CBA Guideline and the TYNDP 2022 Implementation Guidelines for Redispatch calculations.
- If necessary, an explanation of a deviation from the guidelines due to special national regulatory conditions. A submission of these regulations to ENTSO-E for the authorisation process (e.g. RES Monetisation; Consideration of the n-2 criterion – Line Ratings etc.).
- The compliance with the TYNDP 2022 Input Data
 - A description, which proposed options in the guidelines were chosen.
 - AC/DC
 - \circ $\,$ Number of Scenarios and Climate Years \circ Multiple TOOT/PINT \circ
 - Considered Branches Options (e.g.: 110 kV level)

GUIDELINES

Draft version | 3 June 2021

2.4.6. Participating tools in the Redispatch Assessment

The use of redispatch calculations to assess projects is still relatively new and very resource intensive. An extensive software and hardware environment is necessary for this but currently not yet available at the ENTSO-E level with the purpose of centrally coordinated computations. Within the framework of this guideline, we strive to achieve a high standard by defining the main principles. Therefore, in this chapter we would like to clarify the generally accepted approach. However, it should be noted that the implementation of this assessment method can (and most likely will) lead to different approaches when considering the details, not only because of different national requirements and regulations but also because of the different tools used by different promoters.

General approach:

To perform the redispatch simulation, a market simulation is the first step. Based on the output of market simulation with the resulting cost optimal power plant dispatch, a load flow analysis is performed on the grid model to determine the utilisations of network elements in base case and (n-1) case. The line utilisations on (n-1) case resulting from the load flow analysis are evaluated within the redispatch simulation and possible bottlenecks are identified. The power flows, which exceed in the (n-1) case the thermal limits of respective network element (utilisation over 100%) represent the reason for redispatch interventions of generating units in order to ensure the (n-1) security criteria of the electricity grid. Their effect on the power flow on the lines is determined by linear sensitivity factors *PTDF*, so-called "Power Transfer Distribution Factors". The nodal PTDF matrix does offer such a possibility as it translates nodal injections into individual line flows by explicitly stating the contributions of each nodal injection to a given line flow. Assuming a DC approach, PTDFs can be calculated directly from line parameters.

In the next step, the grid data will be reduced to all relevant grid areas and elements that have to be considered in the redispatch simulations (see sections 2.4.9 and 2.4.10). In addition, the costoptimal redispatch optimisation will be performed to solve all respective congestions in the electrical grid.

The final step will be the monetisation of the redispatch outcomes (see also Figure 5 General overview of the necessary steps to be performed to assess projects by use of redispatch calculations.).

GUIDELINES

Draft version | 3 June 2021

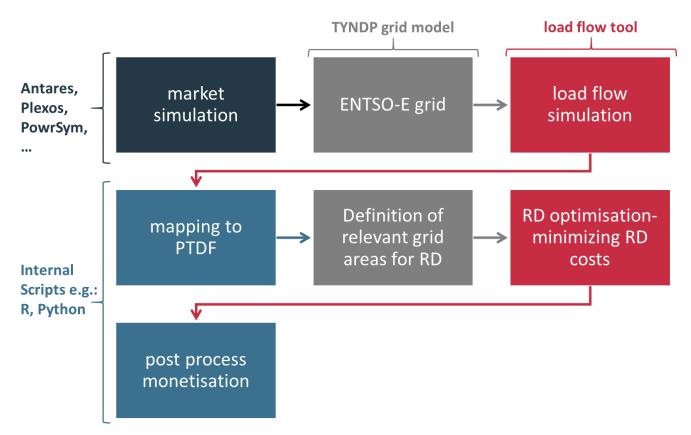


Figure 5 General overview of the necessary steps to be performed to assess projects by use of redispatch calculations.

2.4.7. Requirements for input data

To perform the redispatch calculation, the set of network and market data is required. As the results of the redispatch calculations are very sensitive to the input data used, the essential requirements for the content of the input data are defined in this chapter. Compliance with the defined requirements can ensure the consistency of the redispatch assessment runs and the comparability of results from different tools and promoters. Three data categories can be defined dependent on the confidentiality level:

- 1. Data publicly available
- 2. Data only available on request (Due to data size)
- 3. Data for which an NDA is necessary

GUIDELINES

Draft version | 3 June 2021

2.4.7.1. Market data

Redispatch simulations must be aligned to the market studies performed on the scenarios used in TYNDP 2022. To meet this requirement, the market model input data (see 2.2.5 and 2.2.6) as well as market model simulation results must be included in the dataset for the redispatch assessment.

The main datasets to be used from the market input are (the colour code denotes the confidentiality category as defined above in 2.4.7):

- price assumptions (fuel prices, CO2 price and the marginal costs of thermal generation types calculated from these)
- net generating capacities for all generating types
- demand time series
- must-run values of thermal generation types
- availabilities of thermal units
- inflow profiles for Run-of-Rivers and pump storages
- DSR capacities
- cross-border capacities (NTC values)
- fixed exchanges with non-modelled countries

These data are based on the PEMMDB package per scenario per country and must be coherent with the input that was used for market simulations.

The market model simulation results, which are used as input for the power flow computations, also must be included in the input dataset for the redispatch calculations. This should include:

- Utilisation (hourly time-series) of thermal generation types, DSR and hydro categories
- dumped energy time series
- hourly marginal costs on market nodes
- ENS (energy not served) time series

The market simulation results are covered with the standard market modelling output file provided by the TYNDP Study Team per scenario and climate year.

The methodology for mapping the market results to the grid model depends on the modellingspecific features of the individual grid models. In general, the mapping is based on the distribution of market hourly time-series proportional to the installed capacity of network element with corresponding fuel type code. Given the different requirements of the network models compared to those of the market simulations, certain technical restrictions and requirements can, to some extent, differ between both models (e.g. P_{max}, P_{min}, etc.). However, there must be an alignment process between the parameter used in both models. DSR is subtracted from the demand timeseries. Dumped Energy and Energy not Served are primarily subtracted from renewable energies and the demand.

2.4.7.2. Network data

Grid Model:

The grid model for the redispatch assessment must be aligned with the CGMES grid model submitted for network analysis as a part of TYNDP 2022, so that the installed capacities in the grid

GUIDELINES

Draft version | 3 June 2021

model are the same with market input data and the power flow results are consistent with other grid studies (e.g. the delta NTC, losses calculations).

Any new changes in the grid model after the official grid model collection process must be aligned with TYNDP Grid modelling guidelines and communicated with Working Group Data and Models and TYNDP Study Team.

Power flow analysis:

To determine the utilisations of the lines in the grid model in the base case and under contingencies (N-1 case), the power flow analysis should be performed on the grid model. The power flow simulations should be based either on a DC- or on AC- load flow approach. In the event the AC load flow approach cannot be applied by project promoters due to its complexity and missing comparability between different tools, the usage of a DC approach is allowed (see also section 2.3.3). The network analysis should be made on a year-round basis. If this is not possible, representative points in time can be analysed following the principles laid down in the 3rd CBA Guideline.

Special input data provided by the TSO as part of the grid model:

Due to special national requirements and regulations, it is possible to deviate from the original TYNDP line ratings in the grid model and the n-1 principle based on them. The need to consider these exceptions such as Dynamic Line Rating or curative mitigation measures must be regulatory required and is provided by the respective national TSO. Due to the immense influence on the results, this approach must, at least, be described in material sent to ENTSO-E for performing the compliance check.

2.4.8. Minimum requirements definition for the CBA Assessment

Compared to the TYNDP standard methodology, the assessment of projects with indicators determined using the Redispatch method is very computationally intensive. Nevertheless, a comparable minimum standard should be ensured. This chapter, therefore, addressed the question of the minimum level of detail and number of simulations required to calculate the indicators. However, the project promoter is free to carry out a greater number of simulations within the framework of the guideline or to increase the level of detail of the methods. (e.g. more climate years or additional TYNDP Scenarios). However, this must always strictly follow the assumptions of the TYNDP and the 3rd CBA Guideline. It is not permissible to change any input data or mix scenario data. Otherwise, the comparability of the results would no longer be possible.

Minimum number of TYNDP Scenarios and Time Horizons:

As a minimum requirement, the central policy scenario **National Trends** with the time horizons **2030** and 2040 must be used for project evaluation.

Minimum number of Climate Years:

The minimum requirement for project assessment is to use the most representative climate year of the three climate years represents the three climate groups (1995, 2008 & 2009). In the case of TYNDP 2022, the climate year **2009** is the most representative climate year.

Draft version | 3 June 2021

Minimum number of different Market tool results:

The minimum requirement is to use the results as input for the redispatch assessment of at least **one** market tool that participated in the TYNDP2022 CBA process. It is recommended that the same set of market tool input be always used for all projects within a bidding zone. This should increase the comparability of CBA redispatch results.

Minimum number of Point in Times:

It is recommended to calculate a complete year in hourly time steps. The selection of the minimum number and representativeness of the Points in time are described in the 3rd CBA Guideline.

General:

A multiple TOOT/PINT approach is permitted under the 3rd CBA Guideline and is not restricted by these guidelines. When the multiple TOOT/PINT method or a combination of both is applied, a detailed description of the sequence of projects must be given in a disclaimer. To ensure comparability, the project assessment approach regarding Multiple TOOT/PINT should correspond to the approach chosen in the CBA.

These specifications apply to all project types (overhead line, HVDC, storages...). The description of the selection of input data must be communicated in the project sheet in a disclaimer.

2.4.9. Definition of the perimeter

The minimum perimeter considered in the calculation has to be chosen to cover all relevant grid areas influenced by the project, which depends on whether the project's contribution is considered as mainly internal or also contains a major cross-border part.

Internal projects (without significant CB impact)

The minimum perimeter for internal projects without significant cross-border impact to be monitored during the redispatch calculations is typically the country that includes the project. However, as the European grid is generally highly meshed, it is recommended to include at least the neighbouring countries. In any case, the border flows to the non-modelled countries should be mapped from a full grid model covering the entire synchronous area that the country of the project is part of.

Internal projects (with significant CB impact)

The minimum perimeter for internal projects (with significant CB impact) to be monitored during the redispatch calculations is typically the two or more countries affected by the project on their common border, but the considerations described for internal projects are also valid in this case: it is recommended to also include at least the neighbours of the countries hosting the project.

Typically, the grid model used for the calculations should be the same full European merged grid model used for other calculations in the CBA process. If the full model cannot be utilised in the tool used for redispatch, the smaller perimeters defined above can be used, but the effects of the excluded network parts must be demonstrated (e.g. by showing that all LODF factors in the excluded part to the critical branches are below a certain limit, e.g. 3%).

GUIDELINES

Draft version | 3 June 2021

2.4.10. Order of optimisation measures – Penalty costs

The order or selection of the measures taken by the tool to resolve the bottlenecks on the critical elements depends essentially on two factors:

- Effectiveness of the measure
- The cost of the measure

To define the effectiveness of different measures on the bottleneck in the electrical grid, the PSDF/PTDF sensitivity factors are calculated using a DC load flow assumption. These factors describe the change of utilisation of each line or transformer by adjustment of initial setpoint of controllable units in the electrical grid (powerplants, storages, PSTs, HVDCs etc.).

The costs of the individual measures are insufficiently defined by the scenario and market data. On the one hand, the marginal costs, such as renewable energy is per definition 0; on the other hand, there are measures for grid optimisation that cannot be captured by the market. Furthermore, there is the possibility that regulatory restrictions may specify a certain sequence of redispatch measures. For reasons of security of supply, certain measures are also kept in reserve so that they can be made available in the event of an emergency. All these additional artificial costs are described here as "Penalty Costs".

The corresponding costs of redispatch consist of the costs for up/down regulation of all units K involved in the redispatch across all time steps T. The objective function of the underlying optimisation problem is shown below:

$$T \ \kappa \min f = \sum \sum c(k, t)$$
$$\cdot \Delta p(k, t))$$
$$t=1 \ k=1$$

The above formula only applies to the time coupled approach. Without time coupling, the minimum costs for each hour are defined as a target function.

Basically, the costs c(k,t) picture the coefficients in the objective function of the optimisation problem and depends on the technology/ fuel type of each measure. They determine how and in which sequence the conventional power plants, renewable energy, storage, foreign generation units and power flow controllable devices (PST, HVDC etc.) can be used to cure line bottlenecks. If the costs of the individual units (ex. conventional power plants) are defined by market data, they have to be used as costs coefficient of these units in the optimisation for the redispatch calculation.

Due to this methodically necessary intervention, the sequence of the measures and thus the reduced redispatch quantity (e.g. GWh or CO_2 tons) corresponds to the operational experience of the TSOs, but the Penalty Costs of these measures cannot be used for the project assessment. For this reason, post-monetisation must be implemented (see also chapter 2.4.13).

Furthermore, it must be ensured that in the case of a positive redispatch (power increase), the cheapest measure is always taken first, and in the case of a negative redispatch (power decrease), the most expensive measure is always taken first. This can already be determined by the tool itself or also by suitable penalty costs.

GUIDELINES

Draft version | 3 June 2021

In principle, the following sequence must be ensured – driven by the two types of costs: the "real" costs, also referred to as generation costs, defining the marginal costs of the conventional power plants; and the Penalty Costs that can be interpreted as the model parameter to ensure the desired order of sequence within the redispatch. No country-specific differences to this approach have yet been identified. If these are identified, they must be considered and reported accordingly.

- 1. network-side measures
 - a. topological actions
 - b. power flow controllable devices (PST, HVDC, FACTS)
- 2. weather-dependent line operation curative actions (generating units decrease) included in the ratings (see above)
- 3. Thermal Power plants based on the dispatch costs of each generator
- 4. Storages (Hydro, Batteries, P2G)
- 5. RES
- 6. Cross Border Power plants and Cross Border HVDCs (depending on the perimeter)
- 7. Very Last Step: (2 Possibilities with very high penalty cost)
 - 1. Load Shedding (ENS)
 - 2. Remaining Overloading (Branch Slack)

2.4.11. Considered branches

The planning and operation of electrical transmission networks considers the so-called (n-1)criteria. The (n-1)-criteria ensures that the operating limits of the lines in the system are not violated even in case of single failures of circuits and transformer (busbars overloadings not considered). Using the market related measures, such as redispatch, TSOs adjust the feed-in of power plants in order to shift the power flow from the overloaded branches and therefore ensure the (n-1) security of the system. Hence, the monitoring and identification of relevant branch overloadings has a huge impact on the redispatch results.

Using the AC or DC load flow approach, a set of single outages is simulated on the grid model and the power flow of other branches in the system in each considered (n-1) case is calculated. A branch is said to be overloaded when the actual power flow post contingency exceeds the operational line limit that depends on the protection relay settings and weather conditions. Some TSOs investigate not only single failures but also certain failure combinations, i.e. "(n-2)"-outages or exceptional contingencies.

Generally, the (n-1)-utilisation of all branches in the grid should be considered in the redispatch analysis but, in the context of network development studies, some assumptions are made. The exclusion of certain elements from the optimisation problem helps to avoid an overestimation of redispatch values and obtain more robust and realistic results. Moreover, it can simplify an optimisation problem and reduce the calculation time. Thus, a reasonable and consistent approach to the monitoring of relevant elements is necessary.

Like the generating units, the considered branches must be reduced to the relevant grid area influenced by the project (see chapter 2.4.9). This means that only the branches within the defined perimeter as well as the corresponding interconnectors must be considered in the (n-1)calculation

Draft version | 3 June 2021

and redispatch simulation. As the focus of the TYNDP is on the analyses of the transmission network, the monitored branches can be filtered per se based on the voltage level (e.g. only 220-/380-kV). It is generally assumed that failures and overloading of transformers are not considered in the redispatch analysis, but the decision of whether transformers should be considered is optional and up to project promoters.

Due to necessary simplifications in the model and the network reductions made, artificial overloads and thus artificially high redispatch needs can occur. If such cases are identified, the affected branches should be removed from the observation. Whereas the outages of HVDC lines have a big impact and can seriously increase the utilisation of the AC network, it is necessary to include them into analysis.

2.4.12. Definition of the results for CBA from the Redispatch Assessment

In general, the indicators assessed using the redispatch methodology are the same as when using market simulations as both simulation methods deliver the power plant dispatch, which is the driver for most of the CBA indicators. Below is a list with all CBA indicators as defined in the 3rd CBA Guideline that can be achieved by using the redispatch methodology applying the (multiple) TOOT/PINT approach (all other indicators are not foreseen as being calculated using redispatch):

- <u>B1 SEW:</u> can be achieved by the generation cost approach the same way as for market simulations (including cross-border costs and start-up and shot-down costs
- <u>B2 Societal costs of CO₂</u>: can be achieved the same way as for market simulations as post process
- <u>B3 RES integration</u>: can be achieved the same way as for market simulations by the change in needed reduction in RES generation due to redispatch
- <u>B4 Non-direct greenhouse emissions:</u> can be achieved the same way as for market simulations as post process
- <u>B5 Losses</u>: can be calculated the same way as for market simulations using the dispatch taken from the redispatch calculations as input for the losses calculations
- <u>B9 Reduction of Redispatch Reserves:</u> the only way to calculate this indicator is by nature the use of redispatch simulations

The presentation of the results within the project sheets needs to follow the definitions and requirements as defined within the Implementation Guidelines in the same way as when using market simulations.

2.4.13. Monetisation and quantification of the redispatch results

In principle, the monetisation of the redispatch results can be carried out directly by the simulation tool using the generation cost approach as also applied within the market simulations, as each redispatch of conventional power plants is accompanied by a change in fuel consumption which will naturally impact the system costs. This difference in costs then delivers the benefits (which might also be negative) of the assessed projects.

Draft version | 3 June 2021

If this automated monetisation is not available by the respective tool, the final step of the redispatch assessment will be the monetisation of the simulation results. This step is a post process calculation. The redispatch results are added to the standard CBA results (in line with the 3rd CBA Guideline).

First, a clarification is needed for the energy amount differences per type of power plant between the calculations with/ without the project. For each type of power plant:

for TOOT: Δ energy = energyref. case – project – energyref. case for

PINT: Δ energy = energyref. case - energyref. case + project

B1: SEW – Social Economic Welfare

SEW is defined as the yearly energy amount per power plant type (without RES) times the power plant specific marginal costs (LINK: Price proposal_TYNDP2020).

SEW $[\texttt{E}/\text{yr}] = \sum_{type} \Delta energy_{type} [MWh/yr] * marginal cost_{type} [\texttt{E}/MWh]$

The marginal costs of RES are zero.

SEW_RES

Same application as described in section 4 of these Implementation Guidelines.

SEW_CO2

Same application as described in section 4 of these Implementation Guidelines.

B2: Societal costs of CO2

In the event the specific tool does not directly deliver the CO₂ emissions, to calculate the yearly CO₂ emissions, the energy of the emitting power plant times the specific emissions per energy (see RD-Annex 2) is used.

 $CO_{2} [t/yr] = \sum \Delta \ energy_{type} [MWh/yr] * CO_{2} \ emissions_{type} [t/MWh]$ type

A monetisation is done with the CO_2 prices as described in section 4.

B3: RES integration

Same application as described in section 4 of these Implementation Guidelines.

B4: Non-direct greenhouse emissions

Draft version | 3 June 2021

Same application as described in section 4 of these Implementation Guidelines. B5:

Losses

This indicator will be calculated with the same procedure, as described in the CBA.

B9 – Reduction of Redispatch Reserves:

Same application as described in section 4 of these Implementation Guidelines.

GUIDELINES

Draft version | 3 June 2021

2.4.14. RD-Annex 1: Data for the quality check for minimum modelling

requirements

Table of technical parameters

				der		Load		
Unit name	Unit	N_G	SW_G1	SW_G2	SE_G	SW_L	SE_L1	SE_L2
U	kV	380	380	380	380	380	380	380
Q	MVar	7.48158	2.35231	2.35231	6.45498	4.8	4.8	4.8

	Lines										
Unit name	Unit	L_SW_NW	L_SW_S	L_S_SE	L_NE_SE	L_NW_N	L_NE_N				
Un	kV	380	380	380	380	380	380				
R1	Ohm	0.01	0.01	0.01	0.01	0.01	0.01				
X1	Ohm	1	1	1	1	1	1				
lr	А	600	500	500	600	600	600				

	-		
Unit name	Unit	HVDC1	HVDC2
Ur	kV	400	400
Pr	MW	500	500
rdc	Ω	1	1
voltage-angle-	-control:		
headend station (SE)			
AC-angle control	MW/degree	-1260	-1260
AC-voltage control		OFF	OFF
DC-voltage control		ON	ON
U _{dc}	kV	400	400
headend station (SO)			
AC-angle control	MW/degree	0	0
AC-voltage control		ON	ON
Usetpoint	kV	380	380
DC-voltage control		OFF	OFF

GUIDELINES

Draft version | 3 June 2021

Phase-shifting transformer						
Unit name	Unit	PST_NE_NE_1				
Ur1 (NO)	kV	380				
Ur2 (NE)	kV	380				
Sr	MVar	263.272				
ukr	%	0.18233				
Pk	kW	4.80001				
Poc	kW	100				
io	%	0.1				
vector group		DD4				
tap change	ər					
max.		11				
main		6				
min.		1				
additional vol	tage					
max. position	%	0.17453				
min. position	%	-0.17453				
angle	0	90				

Table of Market Input

1											
		Fee	der		Load						
PIT	N_G	SW_G1	SW_G2	SE_G	SW_L	SE_L1	SE_L2				
	P [MW]										
1	0	-960	0	0	0	0	960				
2	0	-800	-100	0	450	0	450				
3	0	-600	-200	0	400	0	400				
4	-600	0	0	-600	1200	0	0				
5	0	-600	-600	0	600	0	600				
6	-600	-2000	-2000	0	0	2000	2600				
7	0	-800	-800	0	800	0	800				
8	0	-2000	-2000	-600	0	2000	2600				
9	-600	-1000	-1000	-600	1000	1200	1000				

GUIDELINES

Draft version | 3 June 2021

10	0	-900	-900	0	900	0	900
11	0	-1000	-1000	0	1000	0	1000
12	0	-1100	-1100	0	1100	0	1100
13	-600	0	0	0	0	600	0
14	-600	-2000	-2000	-600	0	2600	2600
15	-600	-2000	-2000	0	0	2000	2600
16	-600	0	-1000	-600	1100	0	1100
17	0	-1200	-1200	0	1200	0	1200
18	0	-2000	-2000	0	0	2000	2000
19	0	-1400	-1400	0	1400	0	1400
20	0	-1300	-1300	0	1300	0	1300
21	0	-1100	-1100	0	1100	0	1100
22	0	-900	-900	0	900	0	900
23	0	-700	-700	0	700	0	700
24	0	-500	-500	0	500	0	500

Template of Table of Results

	Feeder					shifting ormer	HVDC	
PI T	N_G	SW_G1	SW_G2	SE_G	PST_NW_NE_1	PST_NW_NE_1	HVDC1	HVDC2
	dP [MW]	dP [MW]	dP [MW]	dP [MW]	dSteps[]	dAngle[°]	dP [MW]	dP [MW]
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								

GUIDELINES

Draft version | 3 June 2021

14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				

2.5. REFERENCE GRID (2.5 in CBA 3)

Based on the guidance given within the 3rd CBA Guidelines, for the TYNDP 2022 two different reference grids are defined for the corresponding two horizons 2030 and 2040. The reference grid for the 2030 horizon, which corresponds to the mid-term horizon, is based on criteria a) and b) as defined within the 3rd CBA Guideline. This means that only projects which, at their time of submission to the TYNDP, are in the construction phase or those which have successfully completed the environmental impact assessment can be part of the 2030 reference grid. The reference grid for the long-term horizon (2040) on top of that includes projects fulfilling the criteria listed under c) within the 3rd CBA Guideline.

In addition to the above given maturity criteria, a cut-off for the commissioning years has been set. This choice deals with the uncertainties in the planning and construction, ensuring that only projects with a strong chance of being commissioned at the dates of the respective scenarios are part of the reference grid. The cut-off has been set to 31 December 2027 for the mid-term horizon (2030) and 31 December 2035 for the long-term horizon (2040), excluding all projects with planned commissioning dates later than these cut-offs.

Given that the UK must be treated as third country and not all projects connect the UK with an EU Member State, the respective projects need to be part of the national plan of the Member State connecting with the UK in order to meet the criterion for becoming part of the reference grid. In that case, although the other maturity criteria and commissioning dates might fulfil the requirement as set out within the 3rd CBA Guidelines those projects cannot become part of the reference grid. However, to deliver a realistic reference grid for the CBA assessment, fictive projects have been introduced to mimic the possible impact of future interconnectors to the UK. The specific treatment of the impacted projects can be seen in the very end of annex II.

A list of projects which are part of the respective reference grids is given in annex II.

Assessment of the commissioning dates

Draft version | 3 June 2021

The 3rd CBA Guideline addresses the need to assess the commissioning years in the event where no information is given within the latest available National Development Plan, when no update from the NRA or other official or legal monitoring process exists. Only in such a case will the commissioning year of a project submitted to be included in the reference grid, or for its application of a CBA assessment within the TYNDP, undergo a review against comparable projects. The result from this assessment will be shown as additional information within the project specific project sheet. The respective commissioning years will not be changed as the submission of the commissioning lies within the responsibility of the project promoters.

For this purpose, the comparability of projects will be categorised using the following criteria:

- Distinct criteria ○ AC or DC ○ Cable or overhead line ○ Onshore or offshore ○ Project status ○ New project or upgrade
- Cost of the project \circ Total project cost of the project (normalised per MW and km)
- Additional criteria \circ Country the project is located in

The commissioning years of each project will be compared against the average commissioning year of all projects within the same category (similar value of the parameter explained below).

The comparison will be undertaken using the information available from the TYNDP 2022 and the actual project submission for the TYNDP 2022.

The cost of the project might indicate the completion of the project as, usually, the longer a project needs to be completed (i.e. permitting, construction, completion of compensation works etc.) the higher the overall cost of the infrastructure will be. To ensure a fair comparison criterion is considered, the overall cost (given in euros) is divided per MW/km, resulting in an indicator fit to represent projects of different sizes in the same manner. In addition, together with the commission date, the start date of the project will be indicated, giving an overview of the time span during which the criteria is considered.

$$x = \frac{cost}{capacity} \cdot length = \frac{\notin}{MW} \cdot km$$

For punctual projects (i.e. transformers, PST, synchronous condensers etc.), a modified version of the parameter can be applied:

$$x = \frac{cost}{capacity} = \frac{\notin}{MW}$$

It should be noted that building a transmission line is a complex task which makes comparisons against each other difficult. Therefore, the methodology can only act as an indication where detailed considerations need to follow.

GUIDELINES

Draft version | 3 June 2021

2.6. INTERLINKAGE BETWEEN THE ELECTRICITY AND THE GAS SECTORS

2.6.1. Background

The presented dual assessment methodology is based on the outcome of the investigation from the Task Force Interlinked Model⁸ (TF-ILM), in which ENTSOG and ENTSO-E jointly developed methods to assess the cross-coupling impacts of gas and electricity projects on the gas and power system. To capture the mutual influences between the sectors of gas and electricity, the dual assessment methodology introduces two alternative coupling conditions. As illustrated in Figure 6a, the Gas to Power (G2P) condition describes the interaction between the gas and electricity system in the presence of the power system as a gas consumer, whereas, under the Power to Gas (P2G) condition, the power system acts as a gas supplier (Figure 6b). Both conditions require an individual assessment algorithm to be run. To align the current CBA frameworks (Gas and Electricity), each algorithm runs sequentially a conventional gas CBA and electricity CBA, while exchanging relevant information e.g. GasToPowerDemand. In contrast to the ILM assessment methodology, these guidelines focus only on the assessment of electricity projects, capturing their impact on the electricity and hydrogen sector under the P2G condition. The assessment is applied to all submitted TYNDP projects.

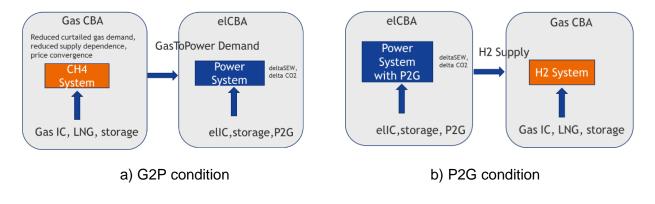


Figure 6: Dual Assessment under a) Gas to Power (G2P) condition and under b) Power to Gas (P2G) condition in the Interlinked Model (ILM Project)

2.6.2. Adjusted and new indicators

Adjusted SEW

The presence of power to gas into the system implies that any change to the electricity or H2 sector will have an impact on the other sector. Hence, when evaluating a project, its impact on both sectors

⁸ ENTSOG and ENTSO-E "Interlinked Model Investigation Screening and Dual Assessment", Progress Report May 2021 available under <u>https://www.entsog.eu/sites/default/files/202105/ILM%20Investigation%20Document.pdf</u>

Draft version | 3 June 2021

must be considered. For example, the addition of an interconnector will change the electricity clearing price in the countries, resulting in a modification of the activation of price-driven power to gas: if the H2 generated by power to gas increases, the needs for H2 coming from other means would decrease.

Hence, indicator SEW represents the variation of electricity global generation cost and H2 global supply cost induced by the addition, or the removal, of a new project.

To calculate the impact of a project on the adjusted SEW, two alternative approaches are presented by using an incremental consideration, e.g. assessment with and without project. The adjusted SEW can be calculated in the same manner as the B1 SEW indicator by using the Total Generation Cost Approach or Total Surplus Approach. However, to capture the entire benefits on a one system view, an extension is necessary as the coupling of the gas and electricity sector introduces welfare movements. They can be accounted for by correcting the social welfare.

This correction can be introduced by the hydrogen part to the SEW as calculated for the electricity system, leading to:

$$SEW = SEW_{el} + SEW_{h2}$$

In principle, this is the only adjustment that needs to be taken. In the following, additional background information on the details behind this concept and what is required for the calculation is given.

Total Generation Cost Approach

Dispatching of electrolysers results in higher costs to operate the power system. Therefore, the cost needs to be adjusted by adding the additional benefit imposed from the hydrogen side. This benefit is associated with the saved cost of providing hydrogen with an alternative supply. This case is illustrated with the market clearing diagrams for the electricity and hydrogen market on the upper panel in Figure 7. The blue and yellow components represent the total cost of supplying the electricity and the hydrogen sector. The green component reflects the saved cost on the hydrogen side and can be calculated with the hydrogen clearing price mcp_{h2} .

GUIDELINES

Draft version | 3 June 2021

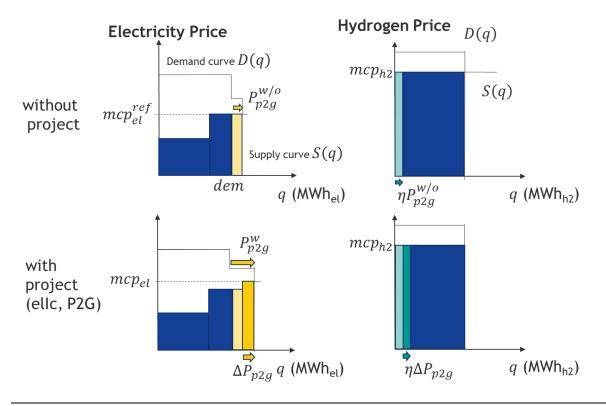


Figure 7: CBA project assessment under sectoral market coupling using total generation cost approach. Blue and yellow components are associated with costs, whereas green components represent a benefit. Note that exchanges between market zones of each sector are neglected.

In addition, this situation can be regarded as the reference case, in which the power set points of the electrolysers in one market zone are summed up to the reference setpoint $P_{p2g}^{w/o}$. If a project is added referred to as a PINT case, its set points can be changed as indicated with P_{p2g}^w . The deviation from the reference case is then:

$$\Delta P_{p2g} = P_{p2g}^{w} - P_{p2g}^{w/o} \text{ with } P_{p2g}^{w}, P_{p2g}^{w/o} > 0,$$

where ΔP_{p2g} could be positive or negative. For positive values, a project would enable a higher utilisation of the electrolysers, which is depicted in the lower panel of Figure 7. Negative values would indicate a lower P2G utilisation compared to the reference case.

To account for the extended social welfare *SEW* that a project is able to unlock, the costs in each sector must be considered as follows:

GUIDELINES

Draft version | 3 June 2021

$$\begin{split} SEW &= \left(cost_{el}^{w/o} - cost_{el}^{w} \right) + \left(cost_{h2}^{w/o} - cost_{h2}^{w} \right) \\ &= - \int_{\substack{dem + P_{p2g}^{w/o} \\ \underbrace{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} \\ \text{ benefit or cost on electricity}}} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} \\ \text{ side}}} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} \\ \text{ side}}} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} \\ \text{ side}}} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} \\ \text{ side}}} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} \\ \text{ side}}} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }}} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem + P_{p2g}^{w/o} \\ benefit \text{ or cost on electricity} }} \int_{\substack{dem +$$

Where:

- *S*(*q*) is the supply curve for the electricity sector,
- η is the P2G efficiency and
- *dem* is the inelastic demand for electricity.

The first term captures the difference of the supply cost between reference case and PINT case and is either a benefit or a cost depending on the direction of ΔP_{p2g} . In the example of Figure 7, this area represents the deep yellow block and would reflect a cost. The derived integral corresponds to the standard calculation of the B1 SEW indicator under the Total Generation Cost Approach. The term $\eta \Delta P_{p2g}$ can be regarded as the produced or withdrawn amount of hydrogen.

This amount can be monetised by multiplying it with the hydrogen price. In the example of Figure 7, this term corresponds to the deep green block and represents a hydrogen benefit. Note that in this example, the project increases overall the extended social welfare as the hydrogen benefit is higher than the additional cost to supply the electricity sector.

It is noteworthy that hydrogen demands are not required for calculating the hydrogen welfare SEW_{h2} as they are cancelled out by the incremental consideration. Furthermore, the calculation of SEW_{h2} only holds under the assumption that P2G is a price taker in the hydrogen sector, which means that P2G does not influence the price in the hydrogen sector. However, this limitation does not hold for the electricity market, in which P2G can affect the clearing price on the electricity side.

Total Surplus Approach

In the same straightforward manner, the incremental change of the extended welfare can be calculated under the total surplus approach as follows:

$$SEW = SEW_{el} + SEW_{h2} = \Delta CS_{el} + \Delta PS_{el} + \Delta CS_{h2} + \Delta PS_{h2} ,$$

where ΔCS_{el} is the consumer surplus and ΔPS_{el} is the producer surplus on the electricity side. The difference of the yellow and blue areas of the right electricity market diagrams in Figure 8 would correspond to ΔCS_{el} and ΔPS_{el} respectively. They can be calculated in the same manner as presented for the B1 SEW indicator by using the results of an electricity market simulation. The consumer (ΔCS_{h2}) and producer surplus (ΔPS_{h2}) on the hydrogen side can be determined by a post process calculation if P2G does not influence the hydrogen prices. Under this assumption, ΔCS_{h2} is zero and the producer surplus on the hydrogen side is given by:

$$\Delta PSh2 = \eta \Delta P_{p2g}(mcph2 - bh2),$$

Draft version | 3 June 2021

where b_{h2} is the price bid. It can be regarded as the price level that a P2G owner is willing to sell hydrogen in the hydrogen sector. At the same time, the P2G owner must place a minimum bid b_{el} = $b_{h2} \eta$ in the electricity market at which he is willing to pay electricity in order to be in the money. Note that if the price bid level b_{h2} equals to the hydrogen clearing price then ΔPS_{h2} is zero, meaning the hydrogen benefit is fully captured in ΔCS_{el} .

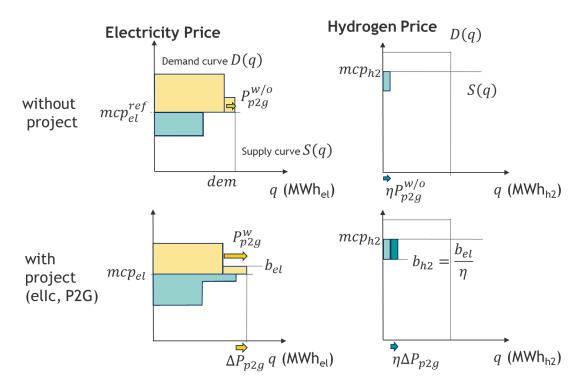


Figure 8: CBA project assessment under sectoral market coupling using the total surplus approach. Yellow blocks represent consumer surpluses (CS) and green blocks are producer surpluses (PS). Note that exchanges between market zones of each sector are neglected.

Benefit or Cost of Additional Hydrogen Supply

As a new indicator, BC_{h2} measures the benefits or costs on the hydrogen side associated with a project. This indicator is already calculated in the welfare consideration and is complementary. The definition is:

$$BC_{h2} = \eta \Delta P_{p2g}mcp_{h2}$$
 For

the interpretation, two cases must be considered:

- *BC*_{h2} > 0: A project could save cost to supply the hydrogen sector, which is associated with a benefit
- *BC*_{h2} < 0: A project activates a lower utilisation of the electrolysers, then an additional cost is incurred to supply the hydrogen sector.

Draft version | 3 June 2021

Assumptions

For simplicity, it is assumed that any amount of produced hydrogen from P2G units can be integrated in the H2 system and can be transported over hydrogen network. A further requirement is that P2G units act as a price taker in the H2 system, which means that they do not influence the price in the hydrogen sector.

Limitations

As an interaction with the H2 system is not modelled, it is not possible to value the impact of gas infrastructure projects on the electricity side. Consequently, it is not possible to assess combinations of competing or complementary gas and electricity projects.

Modelling of P2G Operation in the TYNDP 2022

Unless it is not further specified, the P2G operation is modelled in the same manner as presented in the scenario building modelling report⁹ using configuration 3. Herein, steam methane reforming (SMR) acts as an alternative option to supply the residual demand of hydrogen that cannot be covered by the electrolysers. The complete calculation process of the project benefits is shown in Figure 9. All P2G units in the electricity system are 100% price-driven, which means all units are market participants. Furthermore, the hydrogen sector is modelled in separate hydrogen market nodes connected with a corresponding hydrogen demand and an electrolyser capacity. Due to this implicit integration, a strike price b_{el} is not necessary to operate the P2G units. In this case

 b_{el} must be regarded as zero for the calculation of the consumer ΔCS_{el} and producer rents ΔPS_{h2} using the total surplus approach¹⁰. To avoid price distortions in the hydrogen market zones, their hydrogen demands should be at any time instant higher than their electrolyser capacities. To assess the hydrogen benefit, the hydrogen prices (mcp_{h2}) in the following table are used.

	2025	2030	2040	2050
Hydrogen price mcp_{h2} (Euro/MWh)	67,50	61,67	63,24	64,54

⁹ TYNDP2022 Scenario Building Guidelines available under <u>https://2022.entsos-tyndp-</u>

<u>scenarios.eu/wpcontent/uploads/2021/09/2021-10-TYNDP_2022_Scenario_Building_Guidelines.pdf</u> 10 For consumer surplus calculation electrolyser contributions ($P_{p2g}mcp_{el}$) should be deducted from the consumer surplus to ensure SEW conformity or they should be acknowledged separately as cross-sectorial rents

Draft version | 3 June 2021

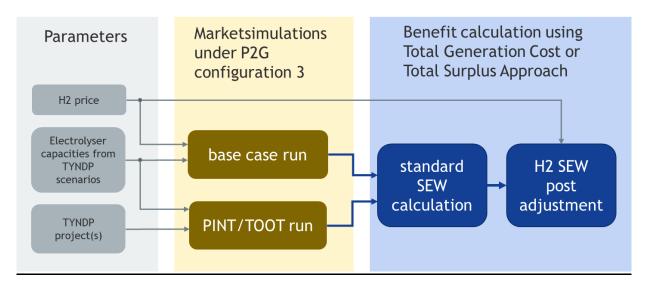


Figure 9: Calculation process and required parameters to assess cross-sector project benefits in the TYNDP 2022

3. GENERAL CONCEPTS AND ASSUMPTIONS

3.1. CLUSTERING OF INVESTMENTS (3.2.1 in CBA 3)

Following the 3rd CBA guideline, only investments that strongly rely on each other may be clustered. A limiting criterion is that clustered investments can at most be one project status level apart from each other. A justification is required whereby the full potential of the main investment can only be achieved after realisation of the supporting investment(s).

Re-clustering for projects from the former TYNDP:

In general, it is of course permissible to use the same projects from the former TYNDP.

However, special attention must be given to investments with commissioning dates that are significantly delayed compared to the previous TYNDP.

The interpretation of "significant delay" and the decision of whether it is still permissible to cluster the investments may be case specific but must nevertheless be directly linked to the required justification, as for any clustering. In this respect, it might be the case that the clustering of one project is allowed whereas for the other one, e.g. where the investment with the earlier commissioning date is strictly necessary for the realisation of the second one (related to the dates as given in the previous TYNDP), it is not, although the respective investments of both projects have the same commissioning dates.

In any case, when the project status also changes due to a delay, the rules as described above must be applied.

GUIDELINES

Draft version | 3 June 2021

3.2. TRANSFER CAPABILITY CALCULATION (3.2.3 in CBA 3)

The Transfer Capability concept at a system boundary is defined by two related concepts, a Net Transfer Capacity (NTC) and a Grid Transfer Capacity (GTC), and their variation enabled by a project, respectively Δ NTC and Δ GTC. The NTC concept stems from market simulations, whereas the GTC refers to physical flows in grid studies. Both are assessed by network studies which take input from market studies.

In a CBA assessment for a project with a cross-border impact (whether the project itself is crossborder or internal), the Δ NTC must be reported. For an internal project without cross-border impact Δ GTC can be reported; however, in TYNDP 2022, such projects are to be assessed by redispatch simulations, which do not require the knowledge of the GTC impact of the project.

Any transfer capability calculations performed by project promoters and compliance checks by ENTSO-E have to be based on the methodology defined in this section.

3.2.1. Net transfer capacity

NTC is defined as the maximum admissible generation power shift (as defined in the CBA methodology) across the boundary between two market areas while respecting the capacity and security criteria (e.g. N-1) of the physical assets.

To get the delta NTC in a given hour and direction, two different calculations must be made (one with the project included and one without the project):

$$\Delta NTC = NTC with - NTC without$$

The NTC values must be calculated using a generation or load power shift:

- Getting the line loadings from load flow calculations under N-1 security criteria
- Achieving the 100%-situation (N-1 secure) by using the generation or load power shift (see below)

This must be done in a manner that is representative for each time-step (in general 8736 hours equivalent to one year, or representative points in time).

The reported \triangle NTC value equals the 70th percentile of the year round \triangle NTC duration curve of the project. This means that the reported \triangle NTC value can be sustained for 30% of the time steps in the simulated period.

Input data required for the calculations

For TYNDP 2022, the \triangle NTC calculations of all projects are based on the hourly market simulation results for the NT2030 scenario from one market tool and one climate year. The selection of the climate year will be based on the highest representativeness of the three used in TYNDP 2022. The

Draft version | 3 June 2021

mapping of market simulation results on the grid model to obtain the starting point for transfer capacity calculation is done as described in Chapter 2.3

The NTC is derived as follows:

 $TTC = BCE + \Delta E_{max} NTC$ = TTC - TRM

where:

- TTC: total transfer capacity,
- NTC: net transfer capacity,
- BCE: base case exchange (which is the initial exchange between the two market areas before applying any additional power shift),
- △E_{max}: the maximum additional power shift respecting the N-1 criterion, □ TRM: transfer reliability margin.

The BCE values are known from the market simulation results. However, they can be volatile due to the optimisation algorithms used in the market simulators. In the case of AC projects, to avoid using the BCE values, the Δ NTCs will be calculated using the market simulation output for the reference case only, meaning that the TOOT/PINT will only be applied in the grid model. This means that the BCE value is the same with and without the project; therefore, it is eliminated from the calculation. As the TRM values may not be known for the reference NTCs, and the changes in TRM resulting from projects are not known either, the Δ NTCs will be approximated by the change in TTCs (by calculating the change of the maximum possible power shift, ΔE_{max}).

The selection of **critical branches** and **critical outages (CB/CO)** for each examined border is done by filtering based on their sensitivity (PTDF values) to the given exchange. The default threshold for PTDF is 5% (in the event there is an agreement established by NRA within a country, a different threshold could be used). This filtering may not be sufficiently accurate for all borders and projects: in such cases, manual addition or removal of network elements from the CB/CO lists needs to be consulted on with the relevant TSOs.

In terms of line ratings, the grid model must include both winter and summer values, at least for the critical branches, to consider the seasonality for the different points in time.

Power shift

The power shift to be applied may be done by changing the generation or the load in the examined market areas. Although the default method is generation power shift, in certain cases load shift is easier to use to get meaningful results (e.g. if there is insufficient dispatchable generation in the examined areas).

In the event generation power shift is used, it can be distributed among the generators in the following ways:

- in proportion to their maximum active power,
- in proportion to their available power margin (maximum active power-actual active power),
 - in proportion to their actual active power, D based on the generation costs.

GUIDELINES

Draft version | 3 June 2021

Given that different modelling tools are used, it is not possible to be restricted to one single methodology for the generation power shift. Within the TYNDP process, the different models are therefore harmonised such that comparable results can be expected.

In each case, the technical limits of the generators must be respected. The chosen method may be dependent on the project and/or border.

In the event load power shift is used, the active power of each load is shifted in proportion of their initial value in each hour. Only loads of ConformLoad or EnergyConsumer classes (see section 2.3) are to be shifted.

The power shift method used for each project and border will be reported within a specific document to be published within the TYNDP 2022 package later in the process.

Other considerations

In the event the examined border includes PSTs, their phase shifts must be optimised in each hour before applying the power shift steps, in order to avoid sub-optimal outcomes because of possible N-1 problems.

Selection of the reported values

When the \triangle NTC values are obtained for all hours, a duration curve is constructed. A separate duration curve is made for each border (in case the project has an NTC impact on more than one border) and both directions. Separate curves are made for each direction.

The value to be reported from each duration curve is the 70th percentile (meaning that this value is reached at least 30% of the year). This is illustrated in the following diagram.

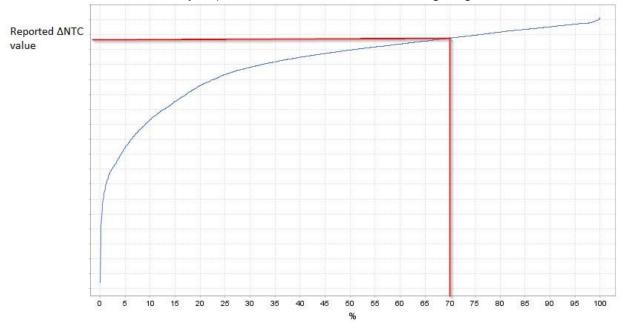


Figure 10 – Sample of a reported Δ NTC value as the difference in boundary exchange in a specific direction that can be supported for 30% of the year due to the project

Draft version | 3 June 2021

Note that in exceptional cases, a project can decrease the NTC, at least in a small number of hours. This does not signify any problems with the calculation but it is inherent to meshed systems. At year-round view when selecting the 70th percentile value, any investment deemed necessary should of course not have a negative value.

In the event representative points in time are used for the calculation (instead of calculating for every hour of the year), the representativeness of each hour has to be weighted when plotting the approximate duration curve.

Summary: steps of the calculation

Based on the detailed descriptions above, the main steps of the \triangle NTC calculation are summarised here.

- definition of the CB/CO lists: either by PTDF-filtering, based on expert judgement, or the combination of both ○ Tool: load-flow tool for PTDF-filtering ○ Input: merged grid model ○ Output: list of relevant branches
- initial load-flow calculations: using a market simulation output for the reference case, running year-round load-flow calculations (or for representative points in time) ○ Tool: loadflow tool
 - $\circ~$ Input: results from market simulations, grid model $\circ~$ Output: initial flows before any power shift
- PST optimisation: depending on the assessed border(s), optimisation PSTs for each hour \circ Tool: load-flow tool
 - $\circ~$ Input: initial flow, PST parameter, grid model $\circ~$ Output: PST angles, new load-flows
- - Input: initial flows (including PST optimisation), grid model
 - \circ Output: maximum power shift in both directions, per hour, with and without the project
- calculation of the difference of the maximum power shifts for each hour (or relevant PiT) \circ Tool: post-processing script \circ Input: maximum power shifts
 - Output: \triangle NTC per hour (weighted if PiT are used)
- construction of the duration curves for △NTCs Tool: post-processing script
 - \circ Input: ΔNTC per hour; if PiT are used, the weights of the PiT are required \circ Output: duration curve
- obtaining the value at the 70th percentile from each duration curve.
 - \circ Tool: post process \circ Input: duration curve \circ Output: \triangle NTC to be reported

3.2.2. Grid transfer capacity

The GTC can be calculated by applying the methodology described within the 3rd CBA Guideline in chapter 3.2.3.

GUIDELINES

Draft version | 3 June 2021

However, in general, the generation or load power shift method can also be applied for calculating the change in GTC. The only difference would be the interpretation of the results: whereas for the NTC calculation, as described in chapter 3.2.1, the change in the power shift is directly taken to get the Δ NTC, for the GTC calculation the change in the physical flow across a certain boundary (for which the Δ GTC is calculated) has to be monitored (with respect to the safety criteria in the whole grid).

Calculation of **AGTC**

The main steps of the calculation are thus generally the same as for a \triangle NTC calculation. The differences are:

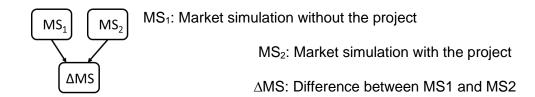
- Instead of monitoring and setting up duration curves of the market exchange shift across a boundary, the physical flow across that boundary is monitored
- Two market simulation outputs (both for the case with and without the project) may be used to achieve higher accuracy of the physical border flows. Note that for the ΔNTC calculation, the same market model output is taken as the starting point for the power shift in the case with and without the project.

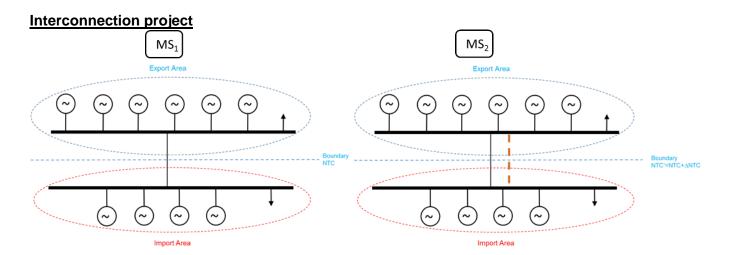
4. BENEFIT INDICATORS (B1 – B9)

This section delivers additional information in order to complement the 3rd CBA Guideline with insight into the benefit assessment within the TYNDP 2022. All sections are directly linked to the respective sections within the 3rd CBA Guideline. Even the event that no additional information is needed to be delivered in this document, the respective indicator is nonetheless displayed for reasons of completeness.

4.1. B1 – SEW (7.3 in CBA 3)

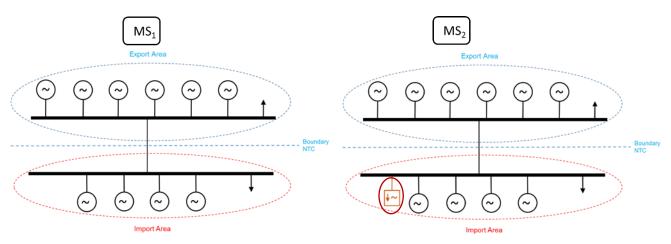
Cross-border projects increase the commercial exchange capability between two bidding areas, allowing generators in the lower priced area to export power to the higher priced area. Their SEW can be calculated using the **generation cost approach** or **total surplus approach** by applying two simulations with and without the project. Refer to the 3rd CBA Guideline for the general methodology and Section 2.2 for the specific approach in TYNDP 2022.


Internal projects can have significant cross-border impact as interconnection projects or can solve internal bottlenecks, leading to large internal benefits being obtained by reducing the redispatch cost generation. Their SEW must be calculated using the **redispatch methodology** by applying two simulations with and without the project.

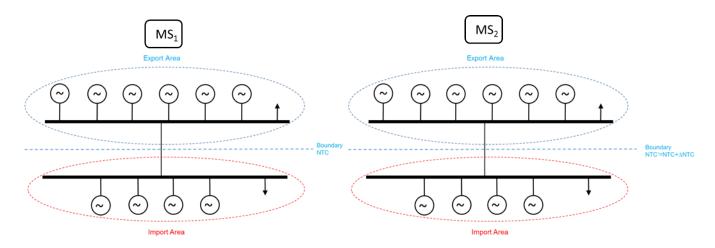

Method 1: Using market simulations

Draft version | 3 June 2021

For projects whose main impact is cross-boundary, such as interconnections, storage and internal projects which affect the NTC between price zones, the assessment can be done using two market simulations:


MS₁: Market simulation with NTC (= NTC _{initial}) between bidding zones without the project MS₂: Market simulation with NTC' (= NTC_{initial} + Δ NTC_{project}) between bidding zones with the project

GUIDELINES


Draft version | 3 June 2021

Storage project

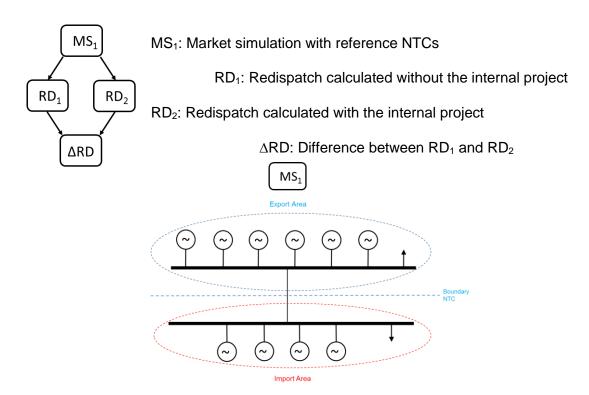
MS₁: Market simulation without the storage project MS₂: Market simulation with the storage project <u>Internal</u> **project:** cross-border impact is the main driver

In this case, there is no physical reinforcement between the bidding zones, but there is an increase in NTC, facilitated by an internal reinforcement.

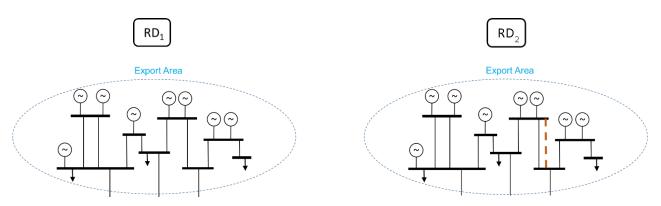
MS₁: Market simulation with NTC (= NTC _{initial}) between bidding zones without the project MS₂: Market simulation with NTC' (=NTC_{initial} + Δ NTC_{project}) between bidding zones obtained with the internal project

The total benefit (SEW) is calculated by summarising the difference in total generation costs or total surplus (Δ MS) obtained from market studies for all the hours of the year.

SEW =
$$\Delta$$
MS



GUIDELINES


Draft version | 3 June 2021

Method 2: Using redispatch simulations, with a market simulation result as a base

For internal projects without significant cross-border impact but with large internal benefits, a combination of market and network studies can be performed:

MS₁: Market simulation with reference NTC between bidding zones

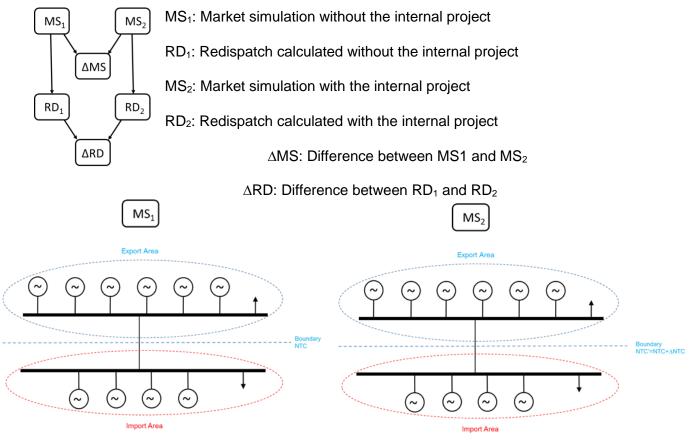
RD₁: Redispatch calculated without the internal project RD₂: Redispatch calculated with the internal project

With the dispatch taken from MS₁ the load flow within the region where the internal project will be installed has to be calculated.

Draft version | 3 June 2021

If congestions are detected in the network studies, the redispatch has to be done (see section 2.4)

The redispatch is calculated with (RD_2) and without (RD_1) the internal project for each time step during one year. In cases where the annual calculation is not possible, representative points in time can be analysed following the principles described in chapter 7.3 of the 3rd CBA Guideline.

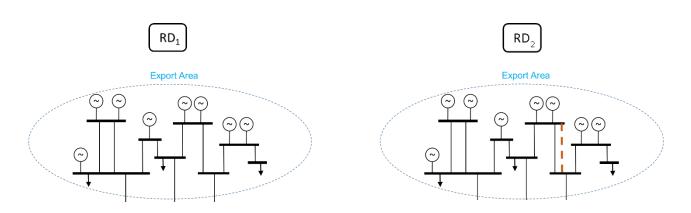

The redispatch costs are defined by the fuel costs of the respective scenario.

The total benefit (SEW) is calculated by summarising the difference in total generation costs (Δ RD) obtained from redispatch for all hours of the year.

SEW = $\triangle RD$

Method 3: Using a combination of market and network (redispatch) simulations

For internal projects with significant cross-border impact and with large internal benefits, a combination of market and network studies can be performed:



MS₁: Market simulation with NTC (= NTC_{initial}) between bidding zones without the project

GUIDELINES Draft version | 3 June 2021

MS₂: Market simulation with NTC' (=NTC_{initial} + Δ NTC_{project}) between bidding zones obtained with the internal project

RD₁: Redispatch calculated without the internal project using the dispatch taken from MS₁ RD₂: Redispatch calculated with the internal project using the dispatch taken from MS₂

The total benefit (SEW) is calculated by summarising the difference in total generation costs or total surplus (Δ MS) obtained from market studies for all the hours of the year and the difference in total generation costs (Δ RD) obtained from redispatch.

SEW =
$$\Delta$$
MS + Δ RD

The market simulations give the benefit related to a change in market capacity between market nodes and the redispatch simulations give the benefit related to a change in line loadings. The change in dispatch from the market studies will influence the line loadings, but this is not considered in the market studies but only in the redispatch. Double counting can therefore not show up, because redispatch just gives the additional benefit that comes from the internal line loadings. This is because of the determination of the system costs without consideration of compensation costs:

- costs_{MS1} = dispatch costs from MS1
- costs_{RD1} = re-dispatch costs from RD1 (only the change in dispatch compared to MS1 is considered)

Therefore, the total system costs of the situation 1 sum up as

COStSMS1 + COStSRD1

The same consideration can be done for situation 2. Applying this to the calculation of the SEW, which is the difference of costs of situation 1 and two, leads to:

$$SEW = (costs_{MS1} + costs_{RD1}) - (costs_{MS2} + costs_{RD2})$$

This leads to:

$$SEW = (costs_{MS1} - costs_{MS1}) + (costs_{RD2} - costs_{RD2})$$

GUIDELINES

Draft version | 3 June 2021

which is the same as

SEW = Δ MS + Δ RD

4.1.1. Fuel savings due to integration of RES (SEW RES)

A project impact on RES integration due to reduction of curtailment and lower short-run variable generation costs is part of the general SEW benefit (B1). In line with the 3rd CBA Guideline, it is explicitly monetised and reported as additional information under indicator B1. This additional information must not be seen as an additional benefit. The monetised benefit RES integration, accounted under SEW, is not an individual indicator and must not be added to the SEW.

As the market tools do not directly monetise the effect of integrating RES within the system, its monetisation must be performed as a post process. The RES integration is monetised by multiplying the annual avoided curtailed RES (in MWh) by the average marginal price (\in /MWh), as follows:

- 1. Calculate the demand weighted average marginal price (the hours of ENS [10000 €/MWh] will be excluded of the computation) from market studies output (reference case with/without project case) per area and per climate year.
- 2. Average over all areas to obtain a Pan-European value per climate year.
- 3. Multiply this average marginal price value [€/MWh] with the annual avoided RES curtailment [MWh] (B3. RES Integration benefit) per climate year.
- 4. The results are then weighted onto the base of the climate year's weighted factors to get the monetary value of RES, accounted under SEW, per scenario.

These steps lead to the following formula for the RES monetisation per climate year:

$$RES_{monetary} = \left[\sum_{q=1}^{c} demand_{q} \cdot \frac{1}{h} \sum_{n=1}^{h} \frac{MC_{q,n}}{demand_{q,n}}\right] * RES$$

MC_{q,n}: Marginal cost at node q in hour n demand_q:

yearly native demand at node q in [MWh]

q: runs over all countries considered within the calculations (c being the number of countries) n: runs over all hours h considered within the calculations

(h=8736)

RES: Annual avoided RES curtailment [MWh]

4.1.2. Avoided CO₂ emission costs (SEW CO₂)

The avoided CO₂ emission costs can easily be extracted from market simulations by multiplying the difference in CO₂ emissions (in t) by the CO₂ costs used in the different scenarios (in \notin /t). These

Draft version | 3 June 2021

costs can be seen as the costs of CO_2 linked to the costs created by the ETS market. It must be noted that in addition to these costs, CO_2 creates additional costs due to the damage it causes to health and the environment. These costs are described in the following chapter. Specific attention must be paid to the risk of double accounting with these societal costs of CO_2 emissions. This is also described in the following chapter.

As with the fuel savings due to RES integration, this monetised avoided CO₂ emission cost is part of the SEW benefit (B1) already. Even when it is reported separately, it should not be added to B1 to avoid double counting.

4.1.3. Relation of the SEW-sub indicators to the total SEW

The total SEW is derived from the cost terms as shown within the 3rd CBA Guideline in table 3, of which the CO₂-costs are one. The RES integration is implicitly already monetised within the SEW as an increase in RES generation will reduce the need of conventional electricity generation, which will lower the overall generation costs. In addition, the CO₂ output is (most likely) to be decreased under higher RES integration. With this in mind, the total SEW can expressed as:

 $SEW_{total} = SEW_{CO2} + rest$

4.2. B2 – ADDITIONAL SOCIETAL BENEFIT DUE TO CO2 EMISSIONS (7.4 in CBA 3)

Variation of CO2 emission

The variation of CO2 emissions comes from two effects

- 1. The change of generation plans: $\Delta CO2_{generation plan}$
- 2. The change of the losses volumes: $\Delta CO2_{losses}$

CO₂ emissions variation from the change of generation plans

The variation of CO_2 emissions resulting from the change of generation plans is computed through two market simulations: one with and one without the project. For each situation, the generation dispatch is assessed during the simulation. The system wide CO_2 emissions are based on the annual dispatched energy of each plant category and their corresponding CO_2 emission factor. The difference between the total CO_2 emissions of the two simulations gives the variation resulting from the change of generation plans.

CO2 emissions variation from the change of losses volumes

In the market simulations, losses are considered via a fixed load demand time series. The addition (or the withdrawal) of a new project can have an impact on the hourly losses volumes and, as a consequence, on the hourly total energy generation, and finally on the CO₂ emissions. The change of the hourly generation is not considered in market simulation because load time series

GUIDELINES

Draft version | 3 June 2021

are identical in both simulations with and without the project. The CO₂ emissions variation resulting from this change of total generation is computed through the following process. For both simulations with and without the project:

- a. For each hour and for each bidding zone, assess the losses volume via network studies. In order to avoid double counting the part of the losses already within the load curve, only the additional part should be used for the following steps of the process (see the double counting methodology section on losses chapter)
- b. For each hour and for each bidding zone, assess the marginal power plant. To assess the marginal power plant per bidding zone, compare the marginal price of the bidding zone to the marginal cost of each fuel type (or cluster of fuel types, see below). The fuel type (or cluster) which has the closest marginal cost is the marginal power plant.
- c. For each hour and for each bidding zone, assess the CO₂ emission of losses by using the additional part of losses (step a.) and the CO₂ emission factor of the marginal power plant (step b.).

Finally, the difference of the CO_2 emission of losses in the case with and without the project aggregated over a full year gives the variation due to the addition of the project.

<u>Note</u>: Some power plant types have very close marginal costs even though their CO_2 emission factor might differ significantly. Hence, to avoid some edge effects, plant types that have close marginal costs (delta < $2 \in /MWh$) are grouped together into a cluster for step b and c. The equivalent marginal cost of the cluster is the average (weighed over the total installed capacity) of the marginal costs of the power plant types that compose it. Similarly, the equivalent CO_2 emission factor of the cluster is the weighted average of the ones of the power plant types that compose it. Note that different scenarios can have different clustering because of the change of marginal costs.

Monetisation

The variation of CO_2 emission is monetised through a societal cost. Indeed, the CO_2 ETS market price used in the marginal cost of power plants does not fully capture the cost that CO_2 emission has on society. The societal cost of carbon can represent two concepts:

- 1. The social cost (or damage cost) that represents the total net damage of an extra metric ton of CO₂ emission due to the associated climate change
- 2. The shadow price (or avoidance cost) that is determined by the climate goal under consideration. This can be interpreted as the willingness to pay for imposing the goal as a political constraint.

In general, the avoidance cost approach is preferred to guide investments. The literature reports numerous studies of both social cost and avoidance cost. This results in a broad range of possible values. For the TYNDP, the values (avoidance cost) from European Commission DG MOVE *Handbook on the external costs of transport*¹⁰ are used. These avoidance costs are aligned with policies to reach the Paris agreement. To represent the uncertainty surrounding these costs within the TYNDP 2022, the societal value of CO2 is calculated using the Low, Central and High value.

Low value	Central value	High value
-----------	---------------	------------

¹⁰ https://op.europa.eu/es/publication-detail/-/publication/9781f65f-8448-11ea-bf12-01aa75ed71a1/language-es

Draft version | 3 June 2021

CO₂ cost (2030) €/t	60	100	189
CO₂ cost (2040) €/t	156	269	498

The societal cost of carbon emissions is considered an absolute given, which does not depend on the scenario that is assessed. Note that, compared to what can be found in literature, these values – even the high one – are rather in the low part of the CO_2 societal cost projections. Care is needed in interpreting these societal costs and comparing them with other monetised costs. Also note that these societal costs are not factored in the market study runs where dispatch is still optimised based on other/lower carbon price, which reflects an effective monetary flow related to the EU ETS scheme.

Double counting

Part of the CO_2 emission variation benefit is already computed within the SEW and the losses cost through the inclusion of the EU ETS CO2 price in the generation cost. Hence, the B2 indicator should only report the additional part of the CO_2 benefit that is not already captured. Consequently, the formula for this indicator is the following:

 $B_2 = (\Delta CO2_{generation plan} + \Delta CO2_{losses}) * (CO2_{societal cost} - CO2_{ETS price})$

In this calculation, CO2_{ETS price} refers to the carbon cost as applied in the market simulations and given in the TYNDP scenario report.

CO2 emissions from market substitution	Market or redispatch studies (substitution effect)	Tonnes/yr	per definition not monetary	European
CO2 emission from losses variation	Network studies (losses computation)	Tonnes/yr	per definition not monetary	European
Societal costs of CO2 emissions from market substitution	Market or redispatch studies (substitution effect)	€/yr	Societal costs decreased by ETS costs as used in the scenario (to avoid double accounting with B1)	European

4.2.1. Different parts of the co2 emissions calculation

Draft version | 3 June 2021

Societal costs of CO2 emissions from losses variation			Societal costs decreased by ETS costs as used in the scenario (to avoid double accounting with B5)	European
--	--	--	---	----------

4.3. B3 - RES INTEGRATION (7.5 in CBA 3)

The integration of RES can be facilitated by a new project in two ways:

- 1. By directly connecting RES capacity to the main power system that is not already connected without the project.
- 2. By increasing the capacity between areas with excess of RES generation and other areas, which facilitates the integration of both existing and new planned RES.

Depending on the type of the project, either one or both ways can play a role. The monetised value is already fully included in the B1 indicator (SEW). This indicator B3 provides the benefit of RES integration in quantitative MW/MWh figures.

Two indicators are used to quantify this impact:

- a. For projects directly connecting RES such as offshore wind parks: the power of the integrated RES, in MW.
- b. For all kind of projects (i.e. directly connecting RES or not): the additional amount of RES energy used in the power system as a consequence of the change on the generation dispatch, in GWh/year. This additional RES energy displaces non-RES energy from the power system. It is computed as the additional yearly RES energy of the connected power (if any), reduced by the additional dumped energy in the system resulting from the addition of the project:

$$RES = E_{project} - (E_{dumpwith} - E_{dumpwithout})$$

With

- *E*_{project}: the yearly energy produced by the connected RES source
- E_{dump}^{with} : the yearly dump energy with the project included
- $E_{dump}^{without}$: the yearly dump energy without the project included

Draft version | 3 June 2021

To directly connect RES projects, this indicator is necessary because the connected RES might not always be available due to the RES curtailment caused by congestions somewhere in the grid.

For non-directly connecting RES projects, this indicator measures the reduction of curtailed energy allowed by the addition of the new connection of area with the excess of RES generation with other areas.

The calculation should be performed as year-round market simulations.

Internal congestion can also lead to RES curtailment. In that case, redispatch simulations are necessary to calculate the RES integration indicator which will be given as the difference of the RES curtailment (energy) with and without the project.

Parameter	Source of Calculation	Basic Unit of Measure	Monetary Measure	Level of Coherence of Monetary Measure
Connected RES	Project specification	MW	per definition not monetary	European
Avoided RES spillage	Market, network or redispatch studies	MWh/yr	included in generation cost savings (B1)	European

GUIDELINES

Draft version | 3 June 2021

4.4. B4 – NON-DIRECT GREENHOUSE EMISSIONS (7.6 in CBA 3)

Grid reinforcements can lead to additional benefits via emission reductions for all greenhouse gases other than CO_2 as well as particulate matters. A dedicated module is used in the TYNDP market studies to track these emissions based on dispatch profiles.

This benefit indicator corresponds to the avoidance of externalities due to NH3, SO2, NOx, PM 5, PM 10 and NMVOC. The benefits of these avoided emissions and how they should be considered in infrastructure projects assessment are described in a study by the European Investment Bank: <u>The Economic Appraisal of Investment Projects at the EIB</u>.

These emissions are derived from the TYNDP market simulations, providing the annual generation by PEMMDB generation category (see annex II) multiplied by the emission type specific emission factor as given in annex I.C. It must be noted that the emission factors are given in [kg/GJ]_thermal, which makes it necessary to apply the given standard efficiency in order to derive the emission factors in [kg/GJ]_electrical.

Parameter	Source of Calculation	Basic Unit of Measure	Monetary Measure	Level of Coherence
Non-CO2 emissions from market substitution	Market or redispatch studies (substitution effect)	Tonnes/yr	per definition not monetary	European

4.5. B5 – VARIATION IN LOSSES (7.7 in CBA 3)

The losses calculations are generally performed by comparing the network simulation results using two market simulation outputs: with and without the project, to consider the change of flows due to the differences in generation dispatch caused by the NTC increase of the project in the market assessment. Whereas the general rules of the load-flow simulations were described in section 2.3, there are some additional ones that are only relevant for losses calculations, which are described below.

DC load-flow improvements

In case DC load-flow analysis are used to calculate the active power flows, the losses on each network branch are estimated by the following formula:

$$Losses [MW] = R \frac{P^2}{U^2 \cos^2 \varphi}$$

Draft version | 3 June 2021

Generally, voltage levels of 110 kV and above are to be considered. To better approximate the voltage pattern of AC load-flow, the voltage values to be used in the formula for the most frequent voltage levels are not the base voltages of the nodes but were determined using the AC load-flow results of selected points in time. The estimated losses' results with these values were also compared to the losses from the AC solution. The values to be used per voltage level are the following:

Voltage level [kV]	Value for U [kV]
380–400	405
220–225	237
150	152
120–132	128
110	115

A common value of $cos(\phi) = 0.95$ to approximate the effect of reactive flows is confirmed by the statistical screening of the branch flows of AC load flow simulations.

Monetisation

The demand curves used in the market simulations for TYNDP 2022 are constructed to cover estimated losses. Therefore, to avoid partial double counting with the B1 benefit (SEW), one of the two possible assumptions described in the 3rd CBA Guideline must be taken. For TYNDP 2020, the assumption that the losses computed in the reference case are included in the demand was made, which means that the double counting compensation is done with the calculated losses results. This leads to the following monetisation formulas:

In the case of PINT projects:

$$Delta Losses (monetized) = \sum_{market node i} (\sum_{time step h} s'_{h,i}(p'_{h,i} - p_{h,i}))$$

In the case of TOOT projects:

$$Delta Losses (monetized) = \sum_{market node i} (\sum_{time step h} s_{h,i}(p'_{h,i} - p_{h,i}))$$

Draft version | 3 June 2021

where $p'_{h,i}$ (with project) and $p_{h,i}$ (without project) are the losses in MWh, and $s'_{h,i}$ (with project) and $s_{h,i}$ (without project) are the marginal costs (taken from the market simulation outputs) in \in /MWh for each market node and time step (hour).

To get meaningful monetised results, the marginal costs must be capped to the highest generation cost of the given scenario. This avoids occasional/exceptional marginal costs of 10000 €/MWh in the case of ENS, which would strongly distort the results. The following values are applied:

Scenario	Cap price [€/MWh]
2030NT	199.0
2040NT	231.8

The cap prices correspond to the Light Oil category in both scenarios.

Losses on HVDCs are to be calculated using a linearised model (Idle Loss+K*Setpoint), for which the parameters are provided by the TSOs and the relevant project promoters. In the event of cross-border HVDCs, the losses are split equally between the two market areas.

Param	neter	Source of calculation	Basic unit of measure	Monetary measure	Level of coherence of monetary measure
Losses	5	Network studies	MWh/yr	€/year (marketbased)	European

4.6. B6 – SoS – ADEQUACY (7.8 in CBA 3)

The adequacy benefit is estimated through the assessment of the Expected Energy Not Supplied (EENS), saved by the addition of the project. This value is monetised via the Value of Lost Load (VoLL) then capped by a sanity check that assesses the amount of generation capacity that would have been necessary to get the same Security of Supply (SoS) level.

Prerequisite:

• To properly model the loss of load probabilities, the hazards must be simulated in detail. This is achieved through a Monte Carlo analysis, requiring a large number of years to be modelled in order to reach the convergence of the outputs. Consequently, for the TYNDP,

Draft version | 3 June 2021

adequacy simulations must be performed with 525 Monte Carlo years¹¹, resulting from the matching of the full set of the 35 PECD climate years and 15 outage patterns¹² time series. These times-series are randomly created through a Monte Carlo process based on the planned and forced outage rates and durations per power plant. See the ENTSO-E ERAA methodology for further details on adequacy assessment stochastics.

 The scenario is built to be realistic in terms of loss of load: for each country, Loss of Load Expectation (LOLE) should be within 1h of its reliability standard criteria¹³, except for countries where there are too many base- and semi base generations (in which case LOLE could be down to 0).

The following process is applied:

- 1. Step 1: Check scenarios
 - a. It is necessary to have a realistic LOLE (less than 1 hour above their national criteria) in the situation without the project. As the scenario is built accordingly based on the reference grid, all PINT projects abide by this principle.
 - b. For a TOOT project, when removing the project, the LOLE goes beyond the acceptable range in some countries based on the NT2030 scenario; therefore, peaking generation units shall be added to comply with the reliability criteria (in all the countries of the global geographical area).
- 2. Step 2: Assess avoided EENS
 - a. Preliminary
 - For a transmission project, if the project links two countries with no loss of load (LOL) in the situation without it, then its adequacy benefit is equal to 0.
 ii. For storage and RES generation project, if the project is connected to a country with no LOL in the situation without it, then the adequacy benefit of the project is 0.
 - b. Assess the EENS without the project.
 - c. Add the project and assess the EENS with it. If an adjustment had been made (for TOOT projects), keep the added generation peaking units in the situation with the project.
 - d. Compute the difference of EENS between both situations. Report this value
 - e. Monetise this difference using the VoLL of each country.
- 3. Step 3: Sanity check¹⁴
 - a. Transmission project
 - If the addition of the project decreases the LOLE in the two countries directly linked by the project, then the sanity check capacity is equal to the sum of the direct and indirect ΔNTC of the project

¹¹ From an internal study it turned out that convergence on the LoL by increasing the number of MC years can be achieved at around 500 years.

¹² An outage pattern time series gives the availability of the generation units on an hourly basis. They were created based on the availability rates of the fuel types as given in the PEMMDB. In alignment with the scenario building also for the B6 indicator assessment 15 outage patterns are to be considered.

¹³ By default 3h/year (if no official value)

¹⁴ This is a simplified sanity check, to be used for the TYNDP. In more advance studies, this sanity check can be refined.

GUIDELINES

Draft version | 3 June 2021

- ii. If the addition of the projects only decreases the LOLE in one of the two countries, then the sanity check capacity is equal to the Δ NTC in the direction that goes to this country.
- b. For storage
 - i. The sanity check is equal to the generation capacity of the project if the addition of the project decreases LOLE in the country and is not required when there is no LOLE decrease due to the project.
- c. For RES project
 - i. The sanity check is equal to the load factor of the project multiplied by the installed capacity if the addition of the project decreases LOLE in the country and would not be required when there is no LOLE decrease due to the project.
- d. Particular projects
 - i. For project with several contributions (in transmission, storage or RES generation), the sanity check is the sum of the sanity checks of each contribution
 - ii. For a project that has an effect on the exchange capacities of more than 2 countries, the sanity check is the sum of the Δ NTC in the direction that goes to countries whose LOLE has decreased by the addition of the project.
- e. Report the sanity check capacity.
- f. Monetise the sanity check with the Cost of New Entry (CONE) value for each country.
- 4. Monetisation
 - a. **VOLL**: as required in the Clean Energy Package, ENTSO-E is working on the definition and the application of a methodology to estimate the VoLL for each country. For TYNDP 2022, the results of this study will be used if available. For countries where it is not yet available, the VoLL will be based on expert judgement at 10 k€/MWh for the monetisation of B6 indicator, in line with common values found in the literature.¹⁵
 - b. CONE: as required in the Clean Energy Package, ENTSO-E is working on the definition and the application of a methodology to estimate the CONE for each country. For TYNDP 2022, the results of this study will be used if available. For countries where it is not yet available, the value will be set at 42 k€/MW/yr for the monetisation of B6 indicator, in line with what is commonly used in the Scenario Building process.¹⁶
- 5. Final value
 - a. The adequacy benefit is the minimum between the monetisation of the EENS avoided by the project and monetisation of the sanity check.

¹⁵ Studies show a wide variety of VoLL depending on methodology sector, country, time of day, time of year, duration and other parameters. A selection of reports on this topic is given in the 3rd CBA guideline. The selected value of 10 k€/MWh falls within the wide range of these studies.

¹⁶ This value relates to that of a OCGT installation cost spread over 25 years with a 6% discount rate, in line with costs of generation as given in the TYNDP 2022 Scenario Building Guidelines (<u>2022.entsos-tyndp-scenarios.eu</u>)

GUIDELINES

Draft version | 3 June 2021

Parameter	Source of	Basic unit	Monetary	Level of
	calculation	of measure	measure	coherence
				of
				monetary
				measure
Level of	Market	MWh/year	€/year	European
Adequacy	simulations		(marketbased)	

GUIDELINES

Draft version | 3 June 2021

4.7. B7 – SoS – FLEXIBILITY (7.9 in CBA 3)

4.7.1. B7.1 - Balancing energy exchange

This indicator is part of the Project Level Indicators and can be delivered by the relevant project promoter. A detailed description of the used methodology needs to be submitted, following the principles of the 3rd CBA Guideline.

It has to be noted that there is a challenge when it comes to choosing the right balance between the complexity and feasibility of completing assessments, timescales and resource levels. On the other hand, producing full models for balancing energy markets may be too time-consuming. As the aforementioned issues could lead to high uncertainties in the delivered values, this indicator will be addressed by qualitative assessment only. Therefore, although the methodology described in the 3rd CBA Guideline predicts monetary results, the value submitted by the promoter will not be published in the TYNDP 2022 project sheet. This value, after validation by ENTSO-E, will be converted into a qualitative indicator, applying the following equivalences:

Value submitted within the range	Corresponding qualitative indicator shown as published in the Project Sheet	
< 1.4 M€	0	
[1.4 M€; 14 M€]	+	
≥14 M€	++	

To ensure the indicator is statistically meaningful, the range thresholds are set based on TYNDP 2020 results and public studies on market integration benefits:

• Definition of the ratio of the socio welfares from:

balancing market integration Long Term + Day Ahead "crossborder"

- Relationship between the SEW of TYNDP 2020 projects for all 2030 scenarios and the expected ratio between Long Term + Day Ahead cross-border trade social welfare (associated to SEW) and the social welfare of balancing market integration;
- This relationship was calculated by applying the ratio equal to 7.5% for all SEW values of all TYNDP 2020 projects for 2030 scenarios (source: social welfare benefits already obtained and to be obtained from various actions intended to increase EU market integration, ENTSO-E, NRAs, NEMOs, Vulcanus and ACER calculations for 2018);

GUIDELINES

Draft version | 3 June 2021

- Subsequently, using this relationship and the ratio equal to 7.5%, ENTSO-E calculated the probability associated with the expected balancing energy exchanges benefit of each project;
- Finally, the probability of balancing energy exchanges benefit being below 1.4 M€ is 35% and below 14M€ is 87.5% (see Figure 11 below)

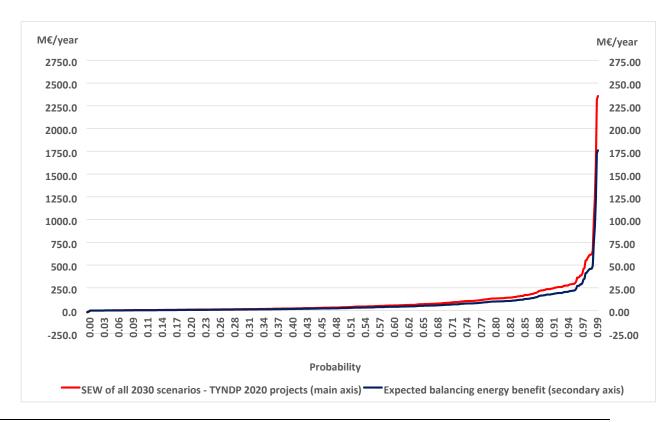


Figure 11 – Illustrative view on how TYNDP 2020 project SEW benefits can be mapped to contributions in balancing energy benefits to come to reasonable thresholds

Parameter	Source of calculation	Basic unit of measure	Monetary measure	Level of coherence
Flexibility in terms of balancing energy exchange	Market simulations	ordinal scale	not monetised	Regional/PP level

Draft version | 3 June 2021

The basic principle of the balancing services indicator is that increasing cross-border capacity could lead to a reduction in balancing energy costs. The scope of the methodology included in the 3rd CBA Guideline aims to quantify this reduction in balancing cost.

In the Annexes an example is included to further clarify the explanation of this indicator. The values included refer to the TYNDP 2020 Implementation Guidelines; however, the application of the methodology is unchanged.

4.7.2. B7.2 - Balancing capacity exchange/sharing

As this indicator has been introduced to the 3rd CBA Guideline for completeness reasons, just giving a qualitative description without delivering a concrete guidance, the balancing capacity exchange/sharing is not computed within the TYNDP 2022.

This indicator is associated with the increase of balancing energy exchange volumes on a crosszonal borders. The impossibility of delivering a unique and universal methodology is related to the high number of variables associated with this indicator.

GUIDELINES

Draft version | 3 June 2021

4.8. B8 – SoS – SYSTEM STABILITY (7.10 in CBA 3)

System stability reflects the project's impact on the ability of a power system to provide a secure supply of electricity as per the technical criteria (such as voltage, frequency and/or black start). In the 3rd CBA guideline the System Stability indicator is addressed using four separate subindicators: B8.0 - Qualitative stability indicator; B8.1 - Frequency stability; B8.2 - Black start services; and B8.3 Voltage/reactive power services.

B8.0 Qualitative stability indicator:

This indicator must be implemented following the guidance given within the 3rd CBA Guideline.

B8.1 Frequency stability:

This indicator is listed as one of the PLI and can be provided by the relevant project promoter. A detailed description of the used methodology has to be submitted, following the principles given in the 3rd CBA Guideline.

For this indicator to be included in the CBA assessment, the promoter should submit a dedicated consistent methodology demonstrating the beneficial effect of the project in mitigating the effects of frequency variations caused by imbalances in the system.

B8.2 Blackstart services

This indicator is listed as one of the PLI and will be directly delivered by the respective project promoter. A detailed description of the used methodology has to be submitted, following the principles given within the 3rd CBA Guideline.

The Blackstart services sub-indicator is contracted or imposed by TSOs to ensure that a minimum level of existing market flexible units are available for re-energising the power system after an event that results in the loss of power supply to the entirety, or part, of a bidding zone or LFC block.

Small systems (such as Baltic States (Latvia, Estonia, Lithuania)) or poorly connected systems have specific operating costs: in line with the long-term plans of the EU (climate policy goals and targets for 2030 or 2050 year), these systems will face RES integration challenges, nonsynchronous generation, decrease of inertia, short circuit power and dynamic voltage stability. These reasons could lead to cascade events or blackout. Such small systems could operate in island mode or with IPS/UPS. However, in the future, these systems will face the operating system control becoming expensive. To avoid or to reduce this, such systems should synchronise. Therefore, these systems must satisfy the requirements of the ENTSO-E to ensure stable work/operation. For this reason, TSOs are conducting research studies. It should be noted that the EC, with the assistance of the Joint Research Centre (JRC) and in cooperation with ENTSO-E and the Baltic TSOs, launched a study on the "Integration of the Baltic States into the

EU electricity system" (the end of 2015). As a further step towards the synchronisation of the power systems of Baltic countries into the CEN, three Baltic TSOs, in cooperation with Tractebel, have performed a multi-disciplinary study of isolated operation of the Baltic power system¹⁷ (2017). In 2017–2018, Baltic TSOs and PSE, together with Institute of Power Engineering in

¹⁷ <u>https://www.litgrid.eu/uploads/files/dir393/dir19/6_0.php</u>

GUIDELINES

Draft version | 3 June 2021

Gdansk, performed a "Dynamic Study of Extension of the Synchronous Area Continental Europe for the Baltic States Transmission Systems". Subsequently, Baltic TSOs, together with ENTSO-E and PSE Operator, performed the Study to assess the frequency stability of synchronously interconnected Baltic States and Continental European electricity network. There are also numerous other studies covering similar topics. It is important to mention that this sub-indicator evaluates extended blackout risks and the consequences of such an event. The calculation of these benefits is carried out by calculating the total costs incurred in the event of a total regional blackout event. Its application is mainly given by Project Promoters.

B8.3 – Voltage/reactive power

This indicator is not assessed in the TYNDP 2022.

GUIDELINES

Draft version | 3 June 2021

4.9. B9 – RESERVES FOR REDISPATCH POWER PLANTS (7.11 in CBA 3)

This indicator is listed as one of the PLI and can be provided by the respective project promoter. A detailed description of the used methodology has to be submitted, following the principles given within the 3rd CBA Guideline. The project promoter has to prove compliance by delivering the requested information linked to each step, as given in the example in the 3rd CBA Guideline. For this purpose, for each of the steps as shown below, the compliance of the study must be given. The simulations must be carried out with and without the project as follows:

- without the project:
 - market simulation to get the initial dispatch (year-round)
 o load-flow simulation to get the initial line loadings (year-round)
 redispatch calculation to mitigate congestions (year-round)
 - from this, for each hour of the year the power activated due to redispatch has to be achieved
- with the project:
 - market simulation to get the initial dispatch (year-round) (if there is no major crossborder impact by the project, the same market simulation as without the project can be used)
 - load-flow simulation to get the initial line loadings (year-round) o redispatch calculation to mitigate congestions (year-round)
 - from this, for each hour of the year, the power activated due to redispatch has to be achieved

A simple example of how to achieve this indicator can be found in Annex V.B

Parameter	Source of Calculation	Basic Unit of Measure	Monetary Measure	Level of Coherence of Monetary Measure
Reduction of necessary reserves for redispatch power plants	Redispatch studies (substitution effect)	MW	€/yr (marketbased)	National

GUIDELINES

Draft version | 3 June 2021

5. PROJECT COSTS

The costs are presented with two main indicators C1 (CAPEX, C1a and C1b) and C2 (OPEX) for every investment in the price base year as defined within the 3rd CBA Guideline. C1a, C1b and C2 need to be reported separately.

5.1. CAPEX (C1a, C1b) (7.12 in CBA 3)

All costs must be delivered by the Project Promoter based on the guidance given within the 3rd CBA Guideline. Any uncertainties (e.g. based on delays) must be considered by applying the uncertainty range respectively.

For non-mature projects, the standard costs must be taken from the table in Annex I.

5.2. OPEX (7.13 in CBA 3)

All expected maintenance and operation costs must be delivered by the Project Promoter based on the guidance given in the 3rd CBA Guideline.

6. RESIDUAL IMPACTS (7.15, 7.16 AND 7.17 IN CBA 3)

In the TYNDP 2022, the Project Promoter will directly deliver the Residual Impacts S1, S2 and S3 following the guidance given in the 3rd CBA Guideline.

The values for the residual impacts have to be determined in line with the line-routing of the projects as given in the TYNDP 2022.

GUIDELINES

Draft version | 3 June 2021

7. PROJECT LEVEL INDICATORS

Project level indicators are indicators given within the 3rd CBA Guideline, whereby it is not yet possible for ENTSO-E to assess certain benefits at a pan-European level within the TYNDP process. This can be due to the lack of tools available at ENTSO-E level or common input data specifically required for the respective indicator, or where the methodology is not yet sufficiently mature to get a full assessment on ENTSO-E level (see section 7.23 in CBA 3 on non-mature indicators).

Competent project promoters can submit the project level indicators within the TYNDP process. It should be noted that the submission of project level indicators does not guarantee their inclusion as they may be assessed and determined to be not valid. The validity of the project level benefit will be verified by ENTSO-E during a review process as part of the wider TYNDP process.

Except for two detailed examples of the B7.1 and B9 indicator given in the annex, it is not foreseen to define within this Guideline a more detailed picture of the PLI in addition to the main principles as defined within the 3rd CBA Guideline. However, project promoters applying for PLI within the TYNDP 2022 need to give a detailed description of the methodology used.

The project level benefits identified within the TYNDP 2022 are as follows:

- B7.1: Balancing Energy Exchange
- B8.1: Frequency Stability
- B8.2: Blackstart services: Methodology for Synchronisation with Continental Europe
- B9: Reduction of necessary reserve for re-dispatch power plants

The other indicators presented in this guideline, which have not been listed above, are not treated as project level indicators.

All indicators calculated based on redispatch simulations within the TYNDP 2022 are to be seen as project promoter based. As the indicators determined by redispatch are the same as from market simulations (except for the B9 indicator), where the detailed methodology is defined within the 3rd CBA guideline, they are not called project level indicators. However, their inclusion in the TYNDP 2022 has to be followed in the same manner as for PLI together with the specific written compliance acknowledgement, as highlighted in section 2.4.5.

For the indicators to be accepted in the TYNDP project sheets, project promoters should provide the following justification elements:

1) Information on the study performed to assess the project level benefit: a. Title

of the study;

- b. Year of the study;
- c. Name of the company that has performed the study; and

Draft version | 3 June 2021

- d. A link or copy of the study should be made available according to the terms of the TYNDP process.
- 2) The study shall contain the following information:
 - a. The assumptions made, together with a detailed explanation. The assumptions required for each project level benefit are detailed in the respective section of these Implementation Guidelines dedicated to that benefit;
 - b. Data source (if requested, the promoter should also be able to provide the data-set that was used);
 - c. Details of the tool(s) used to compute the benefit;
 - d. A clear explanation of how the methodology illustrated in this guideline has been implemented and applied to perform the study; and
 - e. A clear demonstration that the figures provided in the study relate to countries within the ENTSO-E perimeter only.

ENTSO-E will review the information provided by the promoter (PLIs and supporting documentation) with respect to compliance with the 3rd CBA Guideline. Subject to there being no objections, the indicators will be implemented in the TYNDP as valid indicators while clearly indicating the origin of the results.

8. ASSESSMENT OF STORAGE (4 AND 7.18 IN CBA 3)

Storage projects are modelled in the market simulation tools as hydro pump units connected to the corresponding node. This means that for every project, there are two reservoirs: one upwards of the generation/pumping unit and another reservoir downwards. The storage capacity of the upward reservoir corresponds to the storage capacity of the storage project. Then, pumping and turbine capacities, together with the round-trip efficiency of the storage project, correspond to the ones given by the project promoter. Depending on the information provided by the project promoter, additional weekly constraints can be considered. These are: Natural inflow, Maximum/Minimum Generated energy, Maximum/Minimum Pumped energy, Maximum/Minimum Generation, Maximum/Minimum Reservoir levels at the beginning of each week and Maximum/Minimum Reservoir levels at the beginning of each week. These constraints can also vary depending on the climate year used or they can be constant.

After the project is modelled in the market tool, simulations are performed to calculate the market CBA indicators and simultaneously extract the time series for the network calculations.

In the network model, the node(s) to which the unit(s) associated to the project under assessment are to be connected must be given by the project promoter. For the case with the project, the

GUIDELINES

Draft version | 3 June 2021

unit(s) are connected, and the separate time series from the market simulation associated to the project are directly mapped to the corresponding unit(s) (pumping and turbines). Subsequently, the losses are calculated in the same manner as for the standard project assessment.

More detailed information on the modelling of storage will be given within the TYNDP 2022 package later in the process.

9. ASSESSMENT OF HYBRID INTERCONNECTORS

9.1. CONTEXT

9.1.1. Why hybrid interconnector projects?

Following the ongoing European decarbonisation targets and related EU legislation initiatives (Green Deal and FIT for 55 legislative package), a massive uptake in offshore RES (predominantly offshore wind technology) is expected now and in the upcoming decades, aiming at above 60 GW offshore wind + 1 GW ocean energy by 2030 and 300 GW offshore wind and 40 GW ocean energy by 2050 in European waters, following the EC's offshore RES strategy.

Historically, mostly radial connections to onshore bidding zones were developed near-shore, especially for offshore RES (short distances, AC-technology). For the near future, to fully exploit the energy potential of the European sea basins, far-out connections will further be exploited. A new set of technical setups will allow the interconnection-function between bidding zones (on- or offshore) to be combined with a facilitation of direct wind infeed (RES-connection). For these new configurations, which will be defined as (offshore) hybrid projects or dual/ multi-purpose interconnections further below, additional clarifications are needed for proper CBA calculations to be performed in the framework of the European TYNDP.

The CBA methodology application requires clarifications on a number of points for hybrid interconnection projects to ensure suitable implementation in the short term – for application as of TYNDP 2022 by the ENTSO-E TYNDP team, based on available data to be provided by project promoters – and a fair CBA comparison between project promoters within the TYNDP framework to support the PCI process.

In general, the additional guidance for hybrid projects, other than being compliant with the principles of the 3rd CBA guideline (e.g. clustering rules, no double counting of benefits...) should

- 1. explain which cost components and benefits are to be considered, in which reference grid and with which transfer capacities, so that the implementation is sufficiently clear both for the project promoter (TSO or 3rd party promoter) and for the TYNDP study team who are effectively performing the market and technical simulations (ENTSO-E).
- 2. **ensure consistency with the targeted wind capacity levels** defined in the TYNDP scenarios and related reference grid as well as the targeted Offshore Wind Farms (OWFs) capacity in expected future strategic Offshore Development Plans (ODP) at sea basin level, to be defined by the involved MS on different target years towards 2050, following expected new TEN-E

Draft version | 3 June 2021

regulation and Fit-for-55 package. The necessary consistency will drive the proper CBA setup and ensure the realism of the CBA analysis performed.

9.1.2. Out-of-scope

Neither national benefits nor cost sharing elements are elaborated on given the European angle of the TYNDP; this implies that there is no need to know the effective RES target contributions at MS-level nor subsidies (if any). The responsibility for complying with cross-border cost allocation (CBCA) requirements and considering the outcome of the European business case lies at the project promoter level.

It is important to clarify that **the 3rd CBA Guideline and TYNDP Implementation Guidelines are not designed to facilitate "grid variant comparison & dimensioning".** This is a task for the project promoters (TSOs or 3rd parties) to perform, prior to choosing the best setup which will become their reference solution for both the CBA analysis within the TYNDP framework and the potential submission to the subsequent PCI process.

The "best feasible solution" could be multiple things:

- a direct point-to-point interconnector,
- a direct radial connection,
- a hybrid (dual-/ multipurpose) interconnection setup
- meshing between existing radial connections or interconnectors

These key options are highlighted further below in Figure 12 – illustrated for offshore grid development options only. Each of these options could be assessed in the TYNDP, following the project promoter choice of the best feasible solution for their project.

In general, clustering rules apply as specified in the 3rd CBA Guideline in order to determine separate hybrid interconnection projects and their scope. The respect of clustering rules should be monitored in the TYNDP process.

9.2. HYBRID INTERCONNECTOR DEFINITION

The hybrid interconnector projects serve at least dual purposes within the electricity sector and constitutes a new project category related to CBA assessment, which project promoters need to indicate & provide correct parameters for, in order to facilitate appropriate CBA calculation (see separate CBA section further). A further development of "dual purpose" is "multi-purpose" in cases the project integrates other sectors as well (e.g. via electrolysers). This multi-purpose project category, where other sectors are coupled, is not considered in this document.

The hybrid interconnection setup and dual purpose (see Figure 12) can be defined as a project which enables an interconnector function between bidding zones (either onshore or offshore) while simultaneously facilitating a client connection with a certain technology (RES or non-RES; generation, load or storage; AC (e.g. Kriegers Flak) or DC (e.g. North Sea Windpower Hub)). Hybrid interconnection projects are mainly expected offshore and are linked to the European Offshore RES strategy but, in theory, onshore cases could also exist: for instance, a

GUIDELINES

Draft version | 3 June 2021

wind farm in a mountain area with just 1 XB-interconnection (tie-line) passing by to which it could connect, rather than directly within the onshore bidding zones.

From the perspective of the client, for example an offshore wind project, the client connection will directly feed in or take off power off an otherwise direct cross-border interconnection (XB-IC) or tieline/cable that connects MS bidding zones (BZs).

Based on how a hybrid interconnection setup is developed, two CBA options can be defined, as defined exhaustively in chapter 3.

- **CBA Option 1** expansion of an existing radial client connection through the inclusion of an XB interconnection (IC)
- CBA Option 2 project developed anew as a hybrid interconnector

The hybrid interconnection projects target the effective creation of a link between two or more BZs – meaning the project scope goes beyond anything that remains within one and the same BZ. General clustering rules should apply to effectively considering the multiple links & OWF(s) connections together in one project or whether multiple projects need to be created. Once more offshore hybrid interconnection projects are combined, they effectively result in a multi-terminal or offshore network setup.

The different project options that can be pursued by project promoters are listed in Figure 12 below, illustrating the cases for offshore development only – whereas the concepts can also apply onshore.

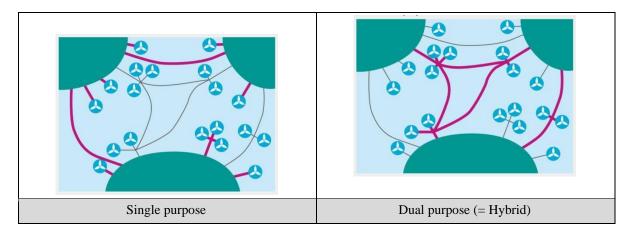


Figure 12: – figure taken from ENTSO-E Position on Offshore Development - Summary of Recommendations, July 2021

GUIDELINES

Draft version | 3 June 2021

9.3. HYBRID INTERCONNECTION CBA

CONFIGURATION

Two CBA setups are possible for CBA analysis and are defined as CBA option 1 and option 2 in the remaining text, with

- Option 1: the project is built on top of an already existing or planned radial connected RES by enabling <u>only</u> an additional interconnector function (which will then also as a result host the existing or planned RES infeed from the initial radial connection)
- Option 2: the project enables both the RES-integration function (i.e. additional OWF capacity is integrated into the system through the project) and the additional interconnector function; and the project is developed anew as a hybrid interconnector

Figure 13 – hybrid CBA fundamental options

For illustration purposes, only the offshore wind technology setup will be illustrated & discussed in the Implementation Guidelines. More complex variants, where multiple links are built to the same OWF or where meshing is introduced (either within same market or between BZs), can follow the same logic.

Example: The North Sea Wind Power Hub project consists of multiple links that will be built to multiple countries and where a multitude of OWF is targeted. This project can then either consist of separate individual projects (which can be combined in a sequential PINT/TOOT analysis) with potentially different Offshore Bidding Zones (OBZs – see 9.5) or it can remain one large project, where the combined NTC impacts are reflected – potentially within one and the same OBZ, in function of the targeted market setup.

9.3.1. CBA Option 1

The project transforms the original client connection towards a cross-border (XB) line, by integrating the offshore RES through building the remaining leg to enable the XB function.

<u>The benefits</u> of market integration (relevant B1, B2, B4, B6 indicators) are enabled by increasing the transfer capacity between country A and B, as shown in Figure 14, enabled either in a home market setup or offshore bidding zone setup. In the case of a home market setup, RES is strictly allocated to either country A or B, and the created single NTC would be lower compared to the case

Draft version | 3 June 2021

of a direct connection between A and B without RES, as the offshore RES energy will impact the options for remaining trade and congest the direct connection.

- In an HM setup (see 9.5), for implementation, the 'reduced NTC concept' needs to be defined, which is dependent on the expected RES infeed profile and which must be calculated as the 'normal NTC without RES' between county A and B minus the 'RES output' following the hourly dispatch results. The NTC calculation should respect general NTC calculation as specified in section 3.2. If the wind output is unknown in case the targeted RES is an offshore wind farm, project promoters should indicate targeted offshore wind location and ENTSOE could calculate remaining NTC using default wind profiles.
- In an OBZ setup (see 9.5) of the targeted RES in the hybrid system, 2 NTCs in total are created, 1 between country A and the OWF and 1 between the OWF and country B. The 2 created NTCs can differ between each other and are linked to the leg size in transport capacity terms.

<u>The costs</u> (CAPEX see 5.1) scope is defined as the asset of the 2nd leg and potential deltas of the targeted client connection.

CBA option 1 can be summarised in Figure 14 below.

Variant 1 – only IC benefits (second leg)

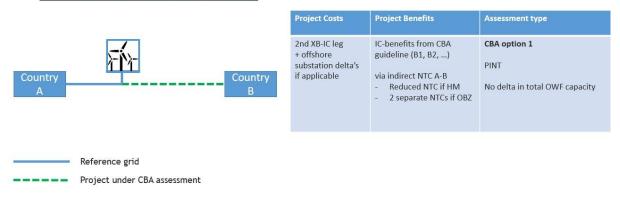


Figure 14 – Project cost & benefit scope under CBA Option 1 assessment

9.3.2. CBA Option 2

The project builds the necessary leg(s) and simultaneously enables additional RES onto the resulting link, thereby enabling the dual function together i.e. the interconnection function and RES integration function. There are indeed principally three different setups possible for CBA option 2.

- (1) Either both legs + access for the RES constitute the project entirely, which builds all anew
- (2) Or, in the event a first leg with a radial RES connection is already planned, where on top of now a hybrid interconnection project will be added. The hybrid interconnection project scope itself for CBA assessment is then only constituted by the second leg and, crucially, also additional RES facilitation on top of the initial radial RES amount. If the radial RES connection is not in the reference grid, then a sequential CBA assessment is required using both projects.
- (3) If a radial RES connection is built on a planned or existing XB line, effectively yielding the same outcome i.e. a hybrid interconnector.

Draft version | 3 June 2021

For the benefits and costs for setups 1/2/3, it should be acknowledged that between 1 and 2 there is only the difference in project cost scope, whereas for theoretic case 3 only RES-integration benefits would be present (with an impact on the remaining NTC between bidding zone A and B dependent on the chosen market setup HM or OBZ). For the remainder of the text, only setup 1 is illustrated.

<u>The benefits</u> of market integration (relevant B1, B2, B3, B4, B6 indicators) are enabled through the creation of:

- Single NTC between A and B enabled in a home market setup (1 reduced NTC in total) and creation of direct RES integration.
- Double NTC (2 NTCs in total i.e. 1 between country A and RES, and 1 between country B and RES) enabled in an OBZ setup and the creation of direct RES integration itself.
- The producer surplus of the targeted RES itself needs to be removed from the EU-SEW, as a
 proxy to warrant the required RES investment. The producer surplus can be calculated as the
 dispatched RES feed-in volume for all hours of the considered year, multiplied by the price the
 OWF gets, which is determined by the bidding zone in which it is considered. This calculation
 can be done ex-post and, in the event the RES is connected to 2 or more bidding zones onshore
 in a separate bidding zone setup, then it will get the lowest price of all bidding zones to which it
 is linked.

<u>The costs</u> (CAPEX see 5.1) scope are all legs part of the project scope required to enable the interconnection function and related substation to enable the RES infeed onto the interconnector (e.g. offshore this is typically a platform). The costs of the RES installation itself are excluded.

CBA option 2 is summarised in Figure 15 below.

Variant 2 – IC + RES addition benefit (setup = both legs + wind)

Figure 15 – Project cost and benefit scope under CBA Option 2 assessment

9.3.3. NTCs

NTCs should respect the guidance as given in section 3.2, and hence can be different from the thermal capacity of the respective legs of the hybrid setup in general and clearly also when different leg sizing is applicable.

NTCs should reflect the HM or OBZ setup chosen, which mainly affects dispatch results in case of negative price occurrence in one or more bidding zones. As explained for both CBA option 1 and 2

GUIDELINES

Draft version | 3 June 2021

under 9.3.1 and 9.3.2, for the HM setup a reduced NTC concept is to be applied, whereas for the OBZ setup separate traditional NTCs can be utilized.

Power rating of the different legs and the targeted voltage level are needed and need to be modelled, in order to most accurately assess amongst others the B5 indicator (grid losses & related monetization).

9.4. Project Promoter

9.4.1. Choice between CBA Option 1 versus 2

The choice between CBA option 1 vs option 2 is up to the project promoter, under TYNDP 2022. However, the impact of the choice should be clear; for example, the consequences for the cost scope of the project (& related benefits), the implicit inclusion of the scope of the RES project and the need to respect the general CBA clustering rules when specifying a project and/or requesting a sequential CBA.

Additional information to justify the choice must be given by the project promoter:

- For CBA option 1 objective information from the involved countries or MS supporting the starting point on which project promoters want to build further and including consistency in future with the expected ODPs & targeted (offshore) RES capacities. This objective information could originate from National Development Plans (NDPs), strategic offshore development plans (ODPs), granted offshore concessions, etc. This implies that the starting point (initial RES connection) is either already existing, or known to be coming, or submitted separately within the TYNDP portfolio framework.
- For CBA option 2, for TYNDP 2022 it is assumed to either add/remove RES capacity on top of/ out of the capacities in the market scenarios in case of PINT/TOOT assessment and this is strictly linked to the reference grid position for each targeted time horizon 2030/2040. Project promoters should specify the targeted location & technology, if possible, in order to perform sanity checks where and if necessary.

In future (as of TYNDP 2024) more detailed rules could be elaborated to more clearly separate both cases, while ensuring transparency & maximum freedom for project promoters to choose what to do, within the bounds of the NDPs, ODPs and acceptable developments for the involved MS.

9.4.2. Data required for TYNDP 2022

This section focusses on offshore RES and typically OWFs, but the described principles & data required can also hold for other technologies used in the hybrid CBA assessments. Project promoters therefore need to submit the following specific information for the hybrid project assessment:

GUIDELINES

Draft version | 3 June 2021

- 1. Indication of 'hybrid interconnection CBA assessment type' and related choice between CBA option 1 and option 2 and complementary information to justify the starting point and to improve the CBA quality
- 2. Indication of targeted market setup either OBZ as default or HM (and which one) for the hybrid interconnection project under CBA assessment
- 3. Targeted RES location (minimally the target country/EEZ), installed capacity [MW], technology with best accuracy possible
- Sizing of power rating of different legs between onshore bidding zones and OWF

 Needed to correctly reflect in NTC estimations
- 5. Voltage level and estimation of related no load & full load losses
 - a. Needed for B5 grid losses

9.5. MARKET SETUP – OFFSHORE BIDDING ZONE VERSUS HOME MARKET

The market setup of the targeted client connection (e.g. offshore wind infeed) could in theory be either a "home-market" setup (meaning connected to a single BZ from the market clearing perspective) or a separate OBZ (meaning a different bidding zone compared to the bidding zones of the MS). Examples are included at the end of this chapter in Figures 16 and 17 on how the market flows are impacted, dependent on the market prices that arise under perfect forecast (no imbalances) for an OBZ and HM setup between 2 countries.

Following an ENTSOE paper¹⁸ on offshore development with a focus on market & regulatory issues from 2020–2021, there is a preference to only allow OBZs for future hybrid systems as this will be better for European society from a market welfare perspective and it ensures the continual respect of the Clean Energy Package rules regarding capacity calculation for interconnectors. Therefore, for modelling purpose, and to ensure a level playing field for a consistent implementation, by default only the use of OBZ for hybrid projects should be applied within the TYNDP project assessment. This implies that existing radial connections in a home market setup today, which would be transformed to hybrid interconnectors, are supposed to be transformed to OBZs setup always (CBA option 1) and similarly for a full hybrid system from the start (CBA option 2).

The concept of defining an OBZ remains to be further elaborated at the EU-level but, in general, the stipulations should respect the fact that no internal bottlenecks occur when defining the OBZ.

Illustration - impact on market modelling results

¹⁸ https://www.entsoe.eu/news/2020/10/15/entso-e-releases-its-2d-position-paper-on-offshore-focusing-onmarketregulatory-issues/

Draft version | 3 June 2021

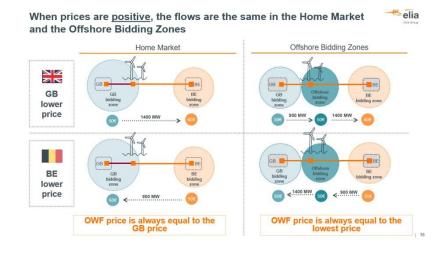


Figure 16 – Expected flows on different legs of an offshore hybrid interconnector, when market prices are positive, for both HM and OBZ setups

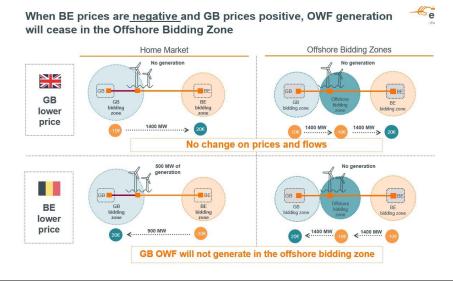


Figure 17 – Expected flows on different legs of an offshore hybrid interconnector, when 1 market price is negative, for both HM and OBZ setups

ANNEXES I. QUANTITATIVE ASSUMPTIONS A. GENERAL ASSUMPTIONS

Quantitative measure	Value
Hurdle costs	0.01 €/MWh

Draft version | 3 June 2021

Cost for ENS in the market models	10000 €/MWh
Grouping of power plant types based on their marginal costs – only used for B2	2 €/MWh
Societal values of CO ₂ emissions (2030)	60 €/t, 100 €/t, 189 €/t
Societal values of CO ₂ emissions (2040)	156 €/t, 269 €/t, 498 €/t
Cap of marginal costs for losses calculations	199.0 €/MWh (NT2030)
	231.8 €/MWh (NT2040)
Value of Lost Load (general assumption)	10000 €/MWh
Cost for new entrant (general assumption)	42000 €/MW/yr

The Table below gives an overview of the VOLL and CONE used within the TYNDP 2022. The values are being collected by a survey addressed to the TSOs and their respective countries. In the event no values are submitted to ENTSO-E the standard values (see table above) are used. Note: the values will be delivered as an addendum to the Implementation Guidelines as soon as the survey is closed.

Country	Value of Lost Load	Cost of new entrant	Non-notified/notified unavailability	NRA agreement

B.CO2 EMISSION PER TYPE

			Efficiency range in NCV terms	Standard efficiency in NCV terms	CO₂ emission factor	CO₂ emission factor	CO ₂ emission factor
Category			%	%	kg / Net GJ	t / Net MWh	t/MWh
#	Fuel	Туре					

GUIDELINES

entsoe

			0.001 0.501	000/		0.00	0.00
1	Nuclear	-	30% – 35%	33%	0	0.00	0.00
2	Hard coal	old 1	30% – 37%	35%	94	0.34	0.97
3	Hard coal	old 2	38% - 43%	40%	94	0.34	0.85
4	Hard coal	new	44% – 46%	46%	94	0.34	0.74
5	Hard coal	CCS	30% – 40%	38%	9.4	0.03	0.09
6	Lignite	old 1	30% – 37%	35%	101	0.36	1.04
7	Lignite	old 2	38% – 43%	40%	101	0.36	0.91
8	Lignite	new	44% - 46%	46%	101	0.36	0.79
9	Lignite	CCS	30% - 40%	38%	10.1	0.04	0.10
10	Gas	conventional old 1	25% – 38%	36%	57	0.21	0.57
11	Gas	conventional old 2	39% – 42%	41%	57	0.21	0.50
12	Gas	CCGT old 1	33% – 44%	40%	57	0.21	0.51
13	Gas	CCGT old 2	45% – 52%	48%	57	0.21	0.43
14	Gas	CCGT present 1	53% - 60%	56%	57	0.21	0.37
15	Gas	CCGT present 2	53% - 60%	58%	57	0.21	0.35
16	Gas	CCGT new	53% - 60%	60%	57	0.21	0.34
17	Gas	CCGT CCS	43% – 52%	51%	5.70	0.02	0.04
18	Gas	OCGT old	35% – 38%	35%	57	0.21	0.59
19	Gas	OCGT new	39% – 44%	42%	57	0.21	0.49
20	Light oil	-	32% – 38%	35%	78	0.28	0.80
21	Heavy oil	old 1	25% – 37%	35%	78	0.28	0.80
22	Heavy oil	old 2	38% – 43%	40%	78	0.28	0.70
23	Oil shale	old	28% – 33%	29%	100	0.36	1.24
24	Oil shale	new	34% – 39%	39%	100	0.36	0.92

GUIDELINES

Draft version | 3 June 2021

C. NON-CO₂ EMISSION FACTORS

		Standard efficiency in NCV terms	NOx emission factor	NH3 emission factor	SO2 emission factor	PM5 and smaller emission factor	PM10 emission factor	NMVOC emission factor
Fuel	Туре	%	kg / Net GJ	kg / Net GJ	kg / Net GJ			
Nuclear	-	33%	0	0	0		0	
Hard coal	old 1	35%	0.19960	0.00170	0.31983	0.00598	0.00394	0.00100
Hard coal	old 2	40%	0.19960	0.00170	0.31983	0.00598	0.00394	0.00100
Hard coal	new	46%	0.19960	0.00170	0.31983	0.00598	0.00394	0.00100
Hard coal	CCS	38%	0.01996	0.00017	0.03198	0.00060	0.00039	NA
Lignite	old 1	35%	0.20308	0.00100	0.22250	0.01688	0.01128	NA
Lignite	old 2	40%	0.20308	0.00100	0.22250	0.01688	0.01128	NA
Lignite	new	46%	0.20308	0.00100	0.22250	0.01688	0.01128	NA
Lignite	CCS	38%	0.02031	0.00010	0.02225	0.00169	0.00113	NA
Gas	conventional old 1	36%	0.05150	0.00600	0.00142	0.00413	0.00262	0.00180
Gas	conventional old 2	41%	0.05150	0.00600	0.00142	0.00413	0.00262	0.00180
Gas	CCGT old 1	40%	0.05150	0.00600	0.00142	0.00413	0.00262	0.00180
Gas	CCGT old 2	48%	0.05150	0.00600	0.00142	0.00413	0.00262	0.00180
Gas	CCGT present	56%	0.05150	0.00600	0.00142	0.00413	0.00262	0.00180
Gas	CCGT present 2	58%	0.05150	0.00600	0.00142	0.00413	0.00262	0.00180
Gas	CCGT new	60%	0.05150	0.00600	0.00142	0.00413	0.00262	0.00180
Gas	CCGT CCS	51%	0.00913	0.00106	0.00025	0.00073	0.00046	NA
Gas	OCGT old	35%	0.05150	0.00600	0.00142	0.00413	0.00262	0.00180
Gas	OCGT new	42%	0.05150	0.00600	0.00142	0.00413	0.00262	0.00180
Light oil	-	35%	0.13800	NA	0.31900	0.00250	0.02000	0.00080
Heavy oil	old 1	35%	0.13800	NA	0.31900	0.00250	0.02000	0.00080
Heavy oil	old 2	40%	0.13800	NA	0.31900	0.00250	0.02000	0.00080
Oil shale	old	29%	0.05000	NA	0.56050	0.00500	0.02000	NA
Oil shale	new	39%	0.05000	NA	0.56050	0.00500	0.02000	NA
Other nonRES	-	-	0.19845	0.01191	0.25290	0.01136	0.01611	0.00393

GUIDELINES

Draft version | 3 June 2021

D. PROJECT STANDARD COSTS

Below is a table with standard costs for the different technologies of transmission lines. As these values are mainly outdated – an update of the costs is still in progress – the values need to be treated with care and, most probably, higher values can be expected.

AC onshore overhead lines					
Investment type	Standard cost ¹⁹	Unit			
AC 380-400 kV OHL 2 circuits	1.0	M€/km			
AC 380-400 kV OHL 1 circuit	0.6	M€/km			
AC 220-225 kV OHL 2 circuits	0.4	M€/km			
AC 220-225 kV OHL 1 circuit	0.3	M€/km			

AC onshore cable

Investment type

	Standard cost	Unit
AC 380-400 kV cable 2 circuits	4.9	M€/km
AC 220-225 kV cable 2 circuits	3.3	M€/km
AC 220-225 kV cable 1 circuit	2.2	M€/km
AC 150 kV cable 2 circuits	1.5	M€/km

¹⁹ Taken from the ACER report; only the rounded mean value is reported here. <u>http://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Publication/UIC Report - Electricity infrastructure.pdf</u>

GUIDELINES

Draft version | 3 June 2021

AC 150 kV cable 1 circuit	0.6	M€/km
Subsea cables Investment type	Standard cost	Unit
AC 150-220 kV cables	1.1	M€/km
DC 250-500 kV cables	0.8	M€/km

AC substations (gas and air isolated i.e. GIS and AIS)

Investment type	Standard cost	Unit
GIS substations	42.6	k€/kV
AIS with 9+ bays	44.0	k€/kV
AIS with 5-8 bays	35.6	k€/kV
AIS with 1-4 bays	33.2	k€/kV

Transformer

Investment type

	Standard cost	Unit
Per MVA rating	9.9	k€/MVA

GUIDELINES

Draft version | 3 June 2021

HVDC converter

Investment type	Standard cost	Unit
1-4 converter transformers	87.2	k€/MVA

6-8 converter transformers 155.7 K€/MVA

II. REFERENCE GRID: LIST OF PROJECTS

TYNDP Id	Project name	Commissioning Year	Included in TYNDP 2022 ref Grid 2030	Included in TYNDP 2022 ref Grid 2040	Project Status
1	RES in north of Portugal	2022	Yes	Yes	Under construction
4	Interconnection Portugal- Spain	2024	yes	yes	In permitting
13	Baza project	2020	yes	yes	In permitting
16	Biscay Gulf	2027	yes	yes	In permitting
21	Italy-France	2020	yes	yes	Under construction
23	FR-BE I: Avelin/MastaingAvelgem- Horta HTLS	2022	yes	yes	In permitting
25	IFA2	2020	yes	yes	Under construction
26	Reschenpass Interconnector Project	2023	yes	yes	Under Construction
28	Italy-Montenegro (second pole)	2026 (2019 according to PCI monitoring)	no	yes	Permits achieved both in Italy and Montenegro (Construction still to be started as the project requires the completion of the Transbalkan corridor)
29	Italy-Tunisia	2027	yes	yes	In permitting
33	Central Northern Italy	2023	yes	yes	in permitting
35	CZ Southwest-east corridor	2028	no	yes	In permitting
36	Kriegers Flak CGS	2020	yes	yes	Commissioned

37	"Norway - Germany, NordLink"	2020	yes	yes	Under construction
39	"DKW-DE, step 3"	2020	yes	yes	Commissioned
47	Amprion - APG	2030	no	yes	Planned but not yet permitting
48	New SK-HU intercon phase 1	2021	yes	yes	Under construction
62	Estonia-Latvia 3rd IC	2021	yes	yes	Under construction
71	COBRA cable	2019	yes	yes	Commissioned
74	Thames Estuary Cluster (NEMO-Link)	2019	yes	yes	In operation
75	Modular Offshore Grid (MOG)	2019	yes	yes	Under construction
77	Anglo-Scottish -1	2017	yes	yes	Under construction
78	South West Cluster	2024	yes	yes	In permitting
81	North South Interconnector	2021	yes	yes	In permitting
85	Integration of RES in Alentejo	2024-2026	yes	yes	In permitting
92	ALEGrO	2020	yes	yes	in operation
94	GerPol Improvements	2022	yes	yes	Under construction
103	Reinforcements Ring NL phase	2025	yes	yes	In permitting
107	Celtic Interconnector	2026	yes	yes	In permitting
110	Norway-Great Britain, North Sea Link	2021	yes	yes	Under construction
111	3rd AC Finland-Sweden north	2025	yes	yes	In permitting
113	Doetinchem - Niederrhein	2018	yes	yes	In operation
121	Nautilus	2028	no	yes	Under consideration
123	LitPol Link Stage 2	2023	yes	yes	Under Construction
127	Central Southern Italy	2027	yes	yes	In permitting
130	HVDC Wolmirstedt to area Isar	2025	Yes	yes	In permitting
132	HVDC Line A-North	2025	yes	yes	In permitting
134	N-S Western DE_section South	2023	yes	yes	In permitting
135	N-S Western DE_parallel lines	2023	yes	yes	In permitting
138	Black Sea Corridor	2024	yes	yes	In permitting
142	CSE4	2023	yes	yes	Under Construction

144	Mid Continental East corridor	2027	yes	yes	In permitting
167	Viking DKW-GB	2023	yes	yes	Under construction
170	Baltics synchro with CE	2026	yes	yes	Under Construction
172	ElecLink	2021	yes	yes	Under construction
173	FR-BE II: PSTs AubangeMoulaine	2021	yes	yes	Under construction
174	Greenconnector	2022	no	yes	In permitting (the project has been fully permitted in Italy, and is in permitting stage in Switzerland)
176	Hansa PowerBridge I	2026	Yes	yes	In permitting
183	"DKW-DE, Westcoast"	2023	yes	yes	In permitting
186	east of Austria	2021	yes	yes	Under Construction
187	St. Peter (AT) - Pleinting (DE)	2024	no	yes	In permitting
190	NorthConnect	2027	yes	yes	In permitting
191	OWP TenneT Northsea Part 2	2024	yes	yes	In permitting
197	N-S Finland P1 stage 2	2022	yes	yes	In permitting
200	CZ Northwest-South corridor	2024	yes	yes	In permitting
203	Morella-La Plana (previosly Aragón-Castellon)	2020	yes	yes	In permitting
208	N-S Western DE_section North_1	2021	yes	yes	In permitting
209	Reinforcement Northeastern DE	2022	yes	yes	In permitting
210	Wurmlach (AT) - Somplago (IT) interconnection	2021	yes	yes	In permitting
219	EuroAsia Interconnector, stage 1 of investment 1409 (CY-GR03)	2024	yes	yes	In permitting
227	Transbalkan Corridor	2026	yes	yes	In permitting
228	Muhlbach - Eichstetten	2025	yes	yes	
230	GerPol Power Bridge I	2024	yes	yes	In permitting
235	HVDC Brunsbüttel/Wilster to Großgartach/Grafenrheinfeld	2026	yes	yes	In permitting

236	Internal Belgian Backbone West: HTLS upgrade Horta- Mercator	2019	yes	yes	Under construction
244	Vigy - Uchtelfangen area	2030	no	yes	Planned but not yet permitting
245	Upgrade Meeden - Diele	2021	yes	yes	Under construction
251	Audorf-Dollern	2019	yes	yes	Commissioned
255	Connection Navarra-Basque Country	2023	yes	yes	In permitting
258	Westcoast line	2022	yes	yes	In permitting
260	New GB/NED Interconnector	2030	no	yes	under consideration
262	Belgium-Netherlands: Zandvliet-Rilland	2022	yes	yes	Under construction
269	Uprate the western 220kV Sevilla Ring	2019	yes	yes	Under construction
297	BRABO II + III	2025	yes	yes	In permitting
299	SACO13	2026	yes	yes	In permitting
309	NeuConnect	2022	yes	yes	In permitting
312	St. Peter - Tauern (AT internal)	2022	yes	yes	Under Construction
313	Isar/Altheim/Ottenhofen (DE) - St.Peter (AT)	2022	yes	yes	In permitting
320	Slovenia-Hungary/Croatia interconnection	2021	yes	yes	In permitting
323	Dekani (SI) - Zaule (IT) interconnection	2020	Yes	Yes	In permitting
324	Redipuglia (IT) - Vrtojba (SI) interconnection	2020	Yes	Yes	In permitting
336	Prati (IT) – Steinach (AT)	2023	yes	yes	Under Construction (internal reinforcements in Italy in permitting)
337	Conneforde-Merzen	2024	yes	yes	In permitting
346	ZuidWest380 NL	2029	no	yes	In permitting
348	NoordWest380 NL	2023	yes	yes	Under construction
350	South Balkan Corridor	2030	yes	yes Under construction	
375	Lienz (AT) - Veneto region (IT) 220 kV	2028	no	yes	planned but not yet in permitting

378	Transformer Gatica	2025	yes	yes	Planned but not yet permitting
379	Uprate Gatica lines	2025	yes	yes	Under consideration
243	New 400 kV interconnection line between Serbia and Croatia	2035	no	yes	Planned but not yet permitting
341	North CSE Corridor	2029	no	yes	Planned but not yet permitting
342	Central Balkan Corridor	2034	no	yes	Planned but not yet permitting
1074	Pannonian Corridor	2033	no	yes	Planned but not yet permitting
1054	Westtirol (AT) - Zell/Ziller (AT)	2027	no	yes	Planned but not yet permitting
338	Adriatic Link	2028	no	yes	In Permitting
339	Tyrrhenian Link	2028	no	yes	In Permitting
1059	Southern Italy	2028	no	yes	Planned but not yet permitting
1055	Interconnection of Crete to the Mainland System of Greece	2022	yes	yes	Under construction
280	Lonny-Achene-Gramme	2030	no	yes	Under consideration
276	Navarra-Landes	2030	no	yes	Under consideration
1074	Pannonian Corridor	2033	no	yes	Planned but not yet permitting
1042	Offshore Wind LT 1	2030	no	yes	planned, but not yet permitting
120	MOG II: connection of up to 2 GW additional offshore wind Belgium	2028	yes	yes	planned, but not yet permitting
1103	Bickigen - Chippis	2028	no	yes	In permitting
1096	Beznau - Mettlen	2028	no	yes	In permitting
1102	Mettlen - Ulrichen	2035	no	yes	In permitting
343	CSE1 New	2030	no	yes	planned, but not yet permitting
NEW	Bisamberg (AT) - NeusiedlZurndorf (AT)	2031	no	yes	planned but not yet permitting
NEW	Wien SO (AT) - HessenbergLeoben (AT)	2033	no	yes	planned but not yet permitting

Draft version | 3 June 2021

1052	Lienz (AT) – Obersielach (AT)	2032	no	yes	planned but not yet
					permitting
1034	HVDC corridor from Northern Germany to Western Germany	2031	no	yes	planned but not yet permitting
1100	HTLS 220kV Niederstedem (DE) - Bauler (DE) - Flebour (LU)	2030	no	yes	planned but not yet permitting
1101	380 kV Project Bofferdange (LU) - Bertrange (LU)	2027	no	yes	planned but not yet permitting
254	Ultranet	2024	yes	yes	In permitting
328	Interconnector DE-LUX	2027	yes	yes	In permitting
340	Avelgem-Center: new corridor (Boucle du Hainaut)	2028	yes	yes	planned, but not yet permitting
329	Stevin-Izegem/Avelgem (Ventilus): new corridor	2028	yes	yes	planned, but not yet permitting
126	SE North-south short-term reinforcements	2024	yes	yes	planned but not yet permitting
1102	SE North-south short-term reinforcements_part 2	2033	no	yes	planned but not yet permitting
377	Upgrade BE-NL interconnector VanEyckMaasbracht	2032	no	yes	under consideration
1104	Niederstedem-Roost	2030	no	yes	planned but not yet permitting

Table 1 Overview of the specific treatment of the EU–UK border

Border	Combined NTC of projects in TYNDP 2022 portfolio (TOOT+PINT)	Needs identified in IoSN2020 (additional to 2025)	Ref. grid definition for CBA	Ref. grid definition for CBA
			2030	2040
UK-FR	4875 MW (1400MW from P285, 2075 MW from P247, 1400 MW from P153)	1400 MW in 2030, 2800 MW in 2040	-	Fictive 1600 MW
UK-BE	2800 MW (1400 MW from P121, 1400 MW from P1049)	0 in both time horizons	-	1400 MW from P121

GUIDELINES

Draft version | 3 June 2021

UK-NL	2000 MW (from P260)	0 MW in 2030, 2000 MW in 2040	-	2000 MW from P260
UK-DE	2800 MW (1400 MW from P309 and 1400 MW from P1050)	0 MW in both time horizons	1400 MW from P309	1400 MW from P309
UK-DK	1400 MW (from P1051)	0 MW in both time horizons	-	-
UK-NO	1400 MW (from P190)	0 MW in both time horizons	1400 MW from P190	1400 MW from P190

III. PEMMDB GENERATION CATEGORIES

Nuclear
Lignite old 1
Lignite old 2
Lignite new
Lignite CCS
Hard coal old 1
Hard coal old 2
Hard coal new
Hard coal CCS
Gas conventional old 1
Gas conventional old 2
Gas CCGT old 1
Gas CCGT old 2
Gas CCGT new
Gas CCGT CCS
Gas OCGT old
Gas OCGT new
Gas CCGT present 1
Gas CCGT present 2
Light oil
Heavy oil old 1
Heavy oil old 2
Oil shale old
Oil shale new
Fuel cell Hydrogen
Run-of-River and pondage

GUIDELINES

Draft version | 3 June 2021

Reservoir
Pump Storage - Open Loop (turbine)
Pump Storage - Open Loop (pump)
Pump Storage - Closed Loop (turbine)
Pump Storage - Closed Loop (pump)
Wind Onshore
Wind Offshore
Solar (Photovoltaic)
Solar (Thermal)
Solar (Rooftop)
Others renewable
Others non-renewable
Lignite biofuel
Hard Coal biofuel
Gas biofuel
Light oil biofuel
Heavy oil biofuel
Oil shale biofuel
Battery Storage discharge (gen.)
Battery Storage charge (load)
Power to Gas (generation)
Power to Gas (load)
Demand Side Response

IV. POINTS IN TIMES FOR LOAD-FLOW CALCULATIONS

In case points in time are used instead of year-round calculations, the selection of representative hours must be ensured. The method applied is based on a clustering algorithm, which identifies 100 clusters of points in time by default – with the optimal number of clusters depending on the number and distribution of the chosen variables – and a representative hour for each. The choice of variables to be used for clustering (which may be both from a market simulation output and a base case year-round load-flow) can be different for each project assessed for points in time. This is due to different parts of the grid being sensitive to different variables (e.g. wind production is an important variable only for countries with a significant amount of installed capacities; or the loading of certain lines in the base case load-flow results may be important for a given area). In case points in time were used, the chosen points in time must be given within the documentation of the TYNDP 2022.

GUIDELINES

Draft version | 3 June 2021

V. EXAMPLES OF PROJECT LEVEL INDICATORS CALCULATIONS

A.B7.1 BALANCING ENERGY EXCHANGE

Example: Computation of indicator B7.1 for a project of interconnection between two countries, A and B

• First Step – Common Platform

It is assumed that in the future there will be platforms to exchange balancing energy products such as "EU imbalance netting", TERRE, MARI and PICASSO.

The first step consists of extracting data of exchange balancing energy products from the balancing platforms mentioned in the event they are available, or historical ones in the event such platforms are not available yet.

For this example, historical data of hourly Replacement Reserves (RR) and manual Frequency Restoration Reserves (mFRR) have been used for two countries (country A and country B) for one year (2019 year) and for upwards (UD) and downwards (DD) needs.

• Second Step – Balancing Need

One option proposed within the 3rd CBA Guideline consists of using historical balancing needs, assuming that they will apply in the future. This option is considered a very conservative approach as the historical values do not reflect the evolution of the energy mix and it is expected that reserve needs will be increased due to the growth of RES. Nevertheless, it will be a valid option in the event there is no estimation of future balancing needs available.

***			STEF	° 2	
			BALANCING	NEEDS	
Date	Hour	Туре	Total Quantity RR+mFRR (MW) country A	Туре	Total Quantity RR+mFRR (MW) country B
2019.01.1	1	UD	800	DD	282.1
2019.01.1	2	UD	344.6	DD	379.25
2019.01.1	3	DD	1362.8	DD	5.01
2019.01.1	4	DD	922.4	UD	0.75
2019.01.1	5	DD	809.8	UD	0
2019.01.1	6	DD	680.3	UD	0
2019.01.1	7	DD	753.5	UD	0
2019.01.1	8	DD	786.7	UD	0
2019.01.1	9	DD	493.3	UD	144.13

Draft version | 3 June 2021

Third Step – Cross-border Exchange Capacity

In this step, the available hourly cross-border capacity after market-closure between country A and country B, which can be used to exchange balancing energy, will be determined in both directions, both with and without the project, as an output from the TYNDP market simulations (each climate year for each time horizon).

For this example, the maximum transfer capacities between country A and B are as follows:

Maximum Transfer Capacity between country A and B (MW)								
	A -> B	B -> A						
Without the project	2300	2500						
With the project	4200	3500						

Considering the above maximum values of transfer capacity between countries A and B and the market simulations, with and without the project, the available capacity for each hour of the time horizon considered can be computed. Results are shown in the last four columns of the following figure:

		STEP 3										
Date Hour		Flows (MW) from market simulation country A > country B WITHOUT the project (2030 NT - 1982 Climate Year) if flows > 0 direction A -> B	Flows (MW) from market simulation country A-> country B WITH the project (2030 NT - 1982 Climate Year) if flows > 0 direction A -> B		s-Border Capacity the project 12 Climate Year)	Available Cross-Border Capacity WITH the project (2030 NT - 1982 Climate Year)						
		if flows < 0 direction $B \Rightarrow A$	if flows < 0 direction B → A				B⇒A					
2019.01.15	5	-2500	-3500	4800	0	7700	0					
2019.01.15	6	-2500	-3500	4800	0	7700	0					
2019.01.15	7	-2500	-3500	4800	0	7700	0					
2019.01.15	8	-2500	-3500	4800	0	7700	0					
2019.01.15	9	-2500	-3500	4800	0	7700	0					
2019.01.15	10	-2500	-3500	4800	0	7700	0					
2019.01.15	11	-2500	-3295	4800	0	7495	205					
2019.01.15	12	0	37	2300	2500	4163	3537					
2019.01.15	13	-2500	82	4800	0	4118	3582					
2019.01.15	14	-2141	272	4441	359	3928	3772					
2019.01.15	15	-818	-818	3118	1682	5018	2682					
2019.01.15	16	-2500	-3500	4800	0	7700	0					
2019.01.15	17	-2500	-3500	4800	0	7700	0					

Fourth Step – Opportunity for Imbalance Netting

Determine the opportunity for imbalance netting between control areas: In situations where imbalance netting requires flows in the same direction as market flows, there is need for available cross-border capacity.

The volume of imbalance netting between country A and country B is calculated, whenever the type of the balancing needs (UU/UD) is not the same in both countries and those needs are not 0, as the minimum of total quantity RR+mFRR in country A and country B:

GUIDELINES

Draft version | 3 June 2021

		STEP 4										
		Balancing Need direction	Available Cross			Der	nand after Netting	WITHOUT the pr	oject		Available Cross	
Date	Date Hour A	A>B B>A	Border Capacity for Netting WITHOUT the project	Netting (MW)	Country	Туре	Quantity Total	Country	Туре	Quantity Total	Border Capacity after Netting WITHOUT the project	
2019.01.1	1	B>A	2500	282.1	A	UD	517.9	В	DD	0	2217.9	
2019.01.1	2	B>A	2500	344.6	A	UD	0	В	DD	34.65	2155.4	
2019.01.1	3	0	0	0	A	DD	1362.8	В	DD	5.01	0	
2019.01.1	4	A>B	2500	0.75	A	DD	921.65	В	UD	0	2499.25	
2019.01.1	5	A>B	2500	0	A	DD	809.8	В	UD	0	2500	
2019.01.1	6	A>B	2500	0	A	DD	680.3	В	UD	0	2500	
2019.01.1	7	A>B	2500	0	A	DD	753.5	В	UD	0	2500	
2019.01.1	8	A>B	2500	0	A	DD	786.7	В	UD	0	2500	
2019.01.1	9	A>B	2500	144.13	A	DD	349.17	В	UD	0	2355.87	

		STEP 4											
		Balancing Need direction		Available Cross			Demand after Netting WITH the p				the project		
Date	Hour	A>B B>A	Netting (MW) Border Capacity for Netting WITH the project	Netting (MW)	Country	Туре	Quantity Total	Country	Туре	Quantity Total	Border Capacity after Netting WITH the project		
2019.01.1	1	B>A	282.1	3500	282.1	A	UD	517.9	В	DD	0	3217.9	
2019.01.1	2	B>A	344.6	3500	344.6	A	UD	0	В	DD	34.65	3155.4	
2019.01.1	3	0	0	0	0	A	DD	1362.8	В	DD	5.01	0	
2019.01.1	4	A>B	0.75	3500	0.75	A	DD	921.65	В	UD	0	3499.25	
2019.01.1	5	A>B	0	3500	0	A	DD	809.8	В	UD	0	3500	
2019.01.1	6	A>B	0	3500	0	A	DD	680.3	В	UD	0	3500	
2019.01.1	7	A>B	0	3500	0	A	DD	753.5	В	UD	0	3500	
2019.01.1	8	A>B	0	3500	0	A	DD	786.7	В	UD	0	3500	
2019.01.1	9	A>B	144.13	3500	144.13	A	DD	349.17	В	UD	0	3355.87	

• Fifth step – Balancing Bids and Offers

Establish the balancing bid price stack for the different balancing markets.

The 3rd CBA Guideline gives four proposals to determine this, with increasing levels of complexity:

- i) Determine a seasonal average balancing bid price using historical data
- ii) Determine hourly national balancing bid price curves, i.e. price and volume offered, using historical data
- iii) Determine historical balancing bid price savings exchanged through a balancing platform
- iv) Determine hourly national balancing bid price curve, i.e. costs and volume offered, using forecast data that reflects changes to the generation mix

In the current example, a conservative approach is applied by determining the hourly balancing bid price, applying the 2019 relation between the average market price and the RR/mFRR price to the marginal cost resulting from the TYNDP market studies.

Draft version | 3 June 2021

	Country A		Country B					
Average market price (€/MWh)	RR+mFRR Upwards (€/MWh)	RR+mFRR Downwards (€/MWh)	Average market price (€/MWh)	RR+mFRR Upwards (€/MWh)	RR+mFRR Downwards (€/MWh)			
47.71	56.775	32.21	47.86	57.65	32.17			
Country A ratio	1.19	0.68	Country B ratio	1.20	0.67			

Sixth Step – Balancing Cost Savings

Balancing costs with and without the project are calculated, considering whether the balancing needs are coming from the interconnection (the reserve price used will be the minimum of the country A and country B) or coming from the own country (the reserve price of the own country is used)

Finally, for imbalance netting, the cost savings are calculated as the difference of the balancing costs with and without the project.

B. B9 REDUCTION OF NECESSARY RESERVE FOR RE-DISPATCH POWER PLANTS

A fictitious example of this indicator is provided for an internal project in country A, as follows:

It is assumed that within country A, a mechanism for allocating redispatch power plants exists and that the assessment has been performed using redispatch simulations following the principles given in section 2.4. The project is part of the reference grid, so the TOOT method will be applied. The following process steps are adhered to:

- 1. Calculate the redispatch power with and without the project for each hour of the year
- 2. Find the maximum redispatch power for both cases (with and without the project):

 $P_{RD (with)} = 16000 MW$, which appears in hour 3465

 $P_{RD(without)} = 18000 MW$, which appears in hour 5687

GUIDELINES

Draft version | 3 June 2021

3. Build the delta:

 $\Delta P_{RD} = P_{RD(without)} - P_{RD(with)} = 18000 MW - 16000 MW = 2000 MW$

4. Monetise the benefit with 20k€/MW of allocated redispatch power plant:

 $B11 = \Delta P_{RD} \times Cost \ of \ Redispatch = 2000 \ MW * 20k \in /MW = 40 \ M \in$