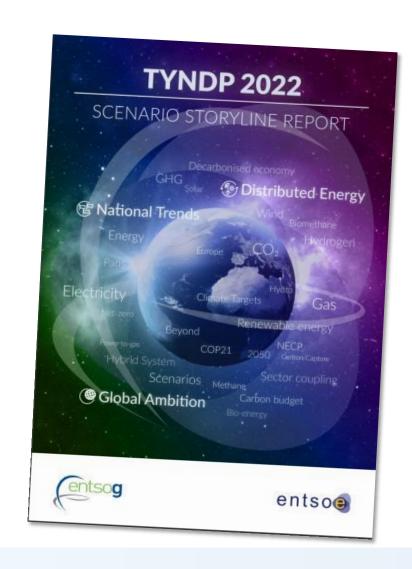
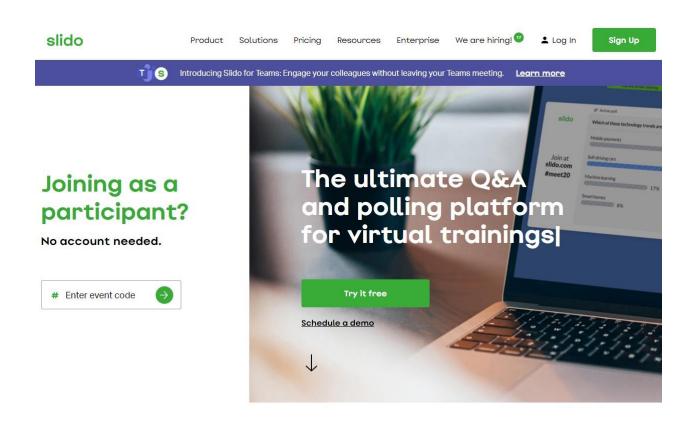
TYNDP 2022 Wind Energ Decarbonised GHG y Solar economy Distributed Energy **National Trends** Europe Biomethane **Paris** Renewable Energy Climate targets Electricity Hydrogen Gas Power-to-Hybrid System gas Carbon Capture Beyond COP21 Carbon **NECP** Net-2050 budget zero Sector coupling Scenarios Global Ambition Bio-

Draft Storyline Consultation Workshop


energy

What would we like to achieve in this webinar?

- 1. Outline the scenario building process and where we are in this process
- 2. Explain the scenario framework we propose for TYNDP 2022
- 3. Present the scenario drivers we like to explore and how we have considered these in contrasted storylines
- 4. Answer your questions
- 5. Achieve common understanding and receive feedback for the finalisation of the storylines



Your Chance to Get Involved

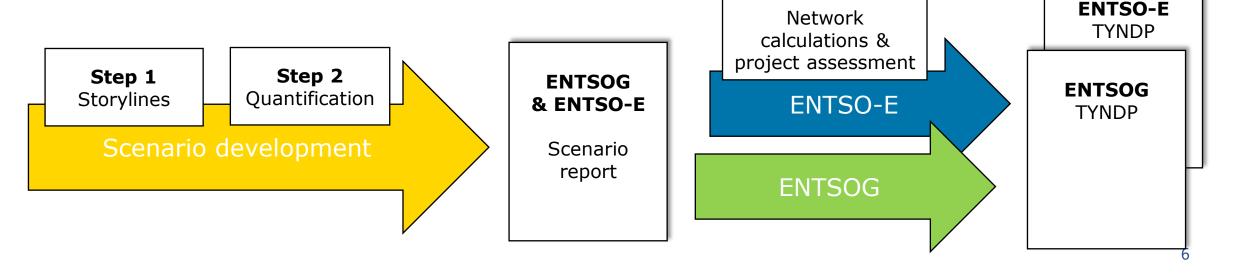
What to do:

- 1. Go to https://www.sli.do
- 2. Enter the event code "TYNDP"
- 3. Enter your name
- 4. Start asking questions

We will review questions throughout the meeting and answer all remaining questions afterwards.

Agenda for today

Agenda Point	Timeslot	Presenters
Welcome	10:00 - 10:10	Gideon Saunders, Lead Stakeholder Engagement
Introduction and Scenario Framework	10:10 – 10:30	Pieter Boersma, Convenor Joint Scenario Building
Scenario Drivers and Descriptions	10:30 – 11:30	Cihan Sönmez, Scenario Manager
Short coffee break	11:30 – 11:45	
Quantitative Ranges	11:45 – 12:15	Guillermo Areosa-Bäuml, Lead Supply Team
Next Steps	12:15 – 12:30	Olivier Lebois, Convenor Joint Scenario Building
Stakeholder Engagement	12:30 – 12:55	Gideon Saunders, Lead Stakeholder Engagement
Closing Remarks	12:55 – 13:00	Gideon Saunders, Lead Stakeholder Engagement


Introduction and Scenario Framework

2 December 2020

ENTSOG and ENTSO-E TYNDP perform network assessment based on scenarios

- By regulation (EU) 347/2013, ENTSO-E and ENTSOG are required to develop a Ten-Year Network development plan (TYNDP) on a bi-annual basis.
- Scenario development for TYNDP in two steps:
 - Step 1: Qualitative scenario storylines descriptions
 - Step 2: scenario quantification

Timeline so far and the purpose of today

- 3 July workshop marked the start of the TYNDP 2022 scenario development cycle.
 - Discussion of purpose of the scenarios and on which drivers to explore
 - ENTSOG and ENTSO-E received feedback on their initial ideas (Q&A available online)
- Continuous bilateral engagement with key stakeholders
- Draft storylines for TYNDP 2022 published on 3 November 2020.

Today we will present the proposed storylines for TYNDP 2022 and welcome your feedback.

June - July

Collecting inputs on key data and storyline dimensions

3 July: First webinar

August - October

Design draft storylines

November - December

Consulting draft storylines

Today: second webinar

December - January

Finalizing storylines

Scenario modelling

Purpose of the scenarios depend on the time horizon

TYNDP 2020 process has shown that scenarios have to combine different expectations along their time horizon trying to tackle the following challenge:

"Combining long term ambition and meaningful short term planning"

The proposed scenario development framework

- The joint ENTSO-E/ENTSOG Scenario Report will include:
 - 2 full-energy scenarios compliant with the Green Deal and Paris Agreement (1,5°C)
 - 1 scenario based on national policies and consistent between gas and electricity
- Creating more than 3 quantified storylines will sacrifice ambitious modelling enhancements, reduced output detail or quality and/or impact on the timely delivery for TYNDP and PCI processes
- The stakeholder engagement process will focus on the 2 full-energy scenario

Scenario Drivers and Storyline Summaries

Scenario drivers

Same ambition

Green Transition

climate ambitions

Energy Intensity

circularity vs comfort

Driving Force of the Energy Transition

decentralised vs centralised self-sufficiency vs. imports

Technologies

supply, demand, sector coupling (incl. hydrogen), e&g flexibilities

Ensure Contrast

Scenario Drivers

Green Transition

Scenarios must be compliant with the Targets of the Paris Agreement!

But what does that mean?

1.5°C or well-below 2°C temperature increase by 2100?

Consideration of a carbon budget?

EU's share of the carbon budget based on population or equity?

Possible overshoot of the carbon budget and compensation by net negative emissions?

How to consider the EU Green Deal and various strategies?

At least 55% GHG emissions reduction by 2030 or more?

Climate neutrality by 2050?

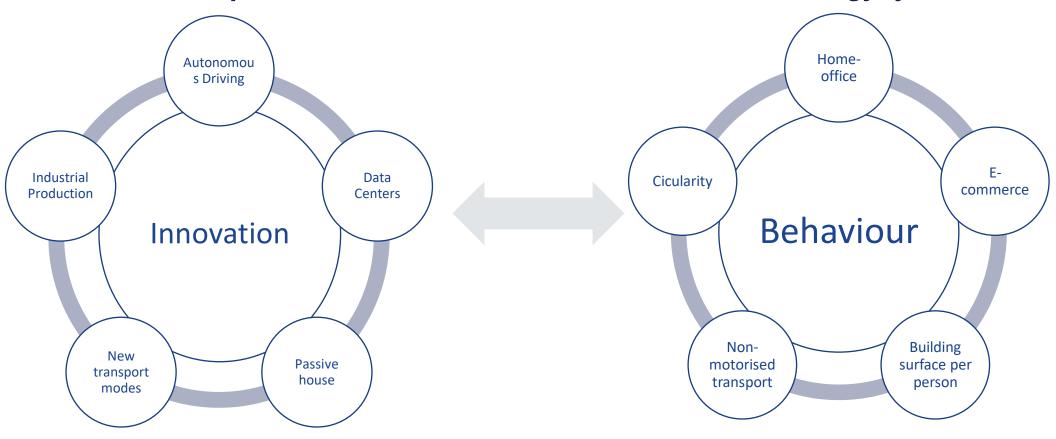

Last 15 years:

- Renewables take up but still represent less than 20% of gross inland consumption
- Imports keep playing an important role in the European energy system

Next 30 years:

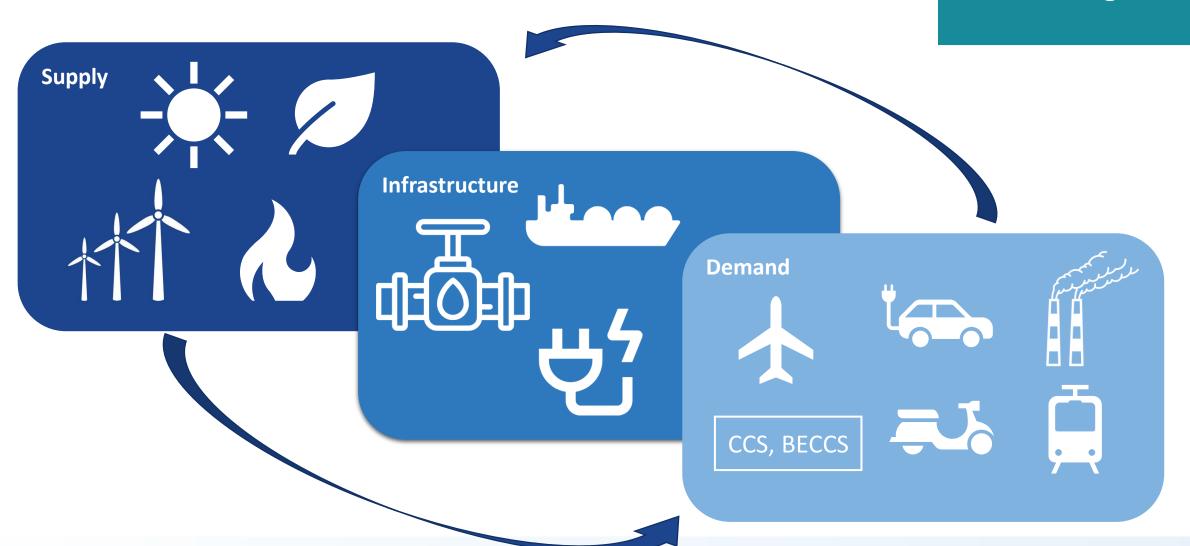
- <u>Initiative:</u> What will be the share of renewables?
- Initiative: How will prosumer impact the build-out of renewables?
- Autonomy and Global Trade:
 - Is there still a role for fossil fuels?
 - Will the EU import its energy, and if so, which carrier will it be?

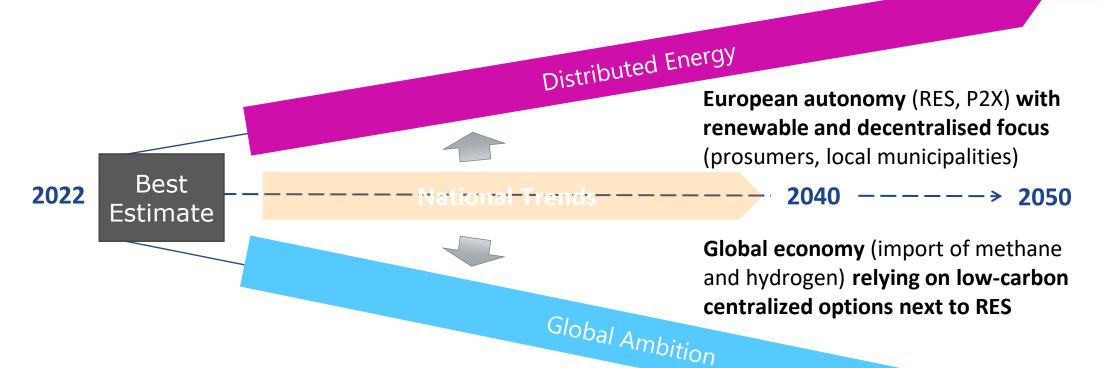
Imports and Renewables as part of (De)Centralisation in EU27



Scenario Drivers

Energy Intensity


What is the impact of innovation and consumer behaviour on energy systems?


Scenario Drivers

Technologies

Scenarios aim to explore the different pathways relevant for infrastructure development

	Energy		
	Distributed Energy	Global Ambition	
	European autonomy with renewable and decentralised focus	Global economy with centralised low carbon and RES options	
Green Transition	Compliant with the 1.5°C target of the Paris Agreement At least -55% reduction in 2030, climate neutral in 2050		
Driving force of	Transition initiated on local/national level (prosumers)	Transition initiated on a European/international level	
the energy transition	Aims for EU energy autonomy through maximisation of RES and smart sector integration (P2G/L)	High EU RES development supplemented with low carbon energy and imports	
Energy intensity	Reduced energy demand through circularity and better energy consumption behaviour	Priority is given to decarbonisation of energy supply. Increased economic activity offsets some of the energy savings.	
	Digitalisation driven by prosumer and variable RES management	Digitalisation and automation reinforce competitiveness of EU business and industry, leading to increase export of goods.	
	Focus of decentralised technologies (PV, batteries, etc) and smart charging	Focus on large scale technologies (offshore wind, large storage)	
	Focus on electric heat pumps and district heating	Focus on hybrid heating technology	
Technologies	Higher share of EV, with e-liquids and biofuels supplementing	Wide range of technologies across mobility sectors (electricity,	
	for heavy transport	hydrogen and biofuels)	
	Minimal CCS and nuclear	Integration of nuclear and CCS	

	<u>Energy</u>		
	Distributed Energy	Global Ambition	
	European autonomy with renewable and decentralised focus	Global economy with centralised low carbon and RES options	
Green	Compliant with the 1.5°C t	arget of the Paris Agreement	
Transition	At least -55% reduction in 2030, climate neutral in 2050		
Driving force of the energy transition	Transition initiated on local/national level (prosumers)	Transition initiated on a European/international level	
	Aims for EU energy autonomy through maximisation of RES and smart sector integration (P2G/L)	High EU RES development supplemented with low carbon energy and imports	
Energy intensity	Reduced energy demand through circularity and better energy consumption behaviour	Priority is given to decarbonisation of energy supply. Increased economic activity offsets some of the energy savings.	
	Digitalisation driven by prosumer and variable RES management	Digitalisation and automation reinforce competitiveness of EU business and industry, leading to increase export of goods.	
Technologies	Focus of decentralised technologies (PV, batteries, etc) and smart charging	Focus on large scale technologies (offshore wind, large storage)	
	Focus on electric heat pumps and district heating	Focus on hybrid heating technology	
	Higher share of EV, with e-liquids and biofuels supplementing for heavy transport	Wide range of technologies across mobility sectors (electricity, hydrogen and biofuels)	
	Minimal CCS and nuclear	Integration of nuclear and CCS	

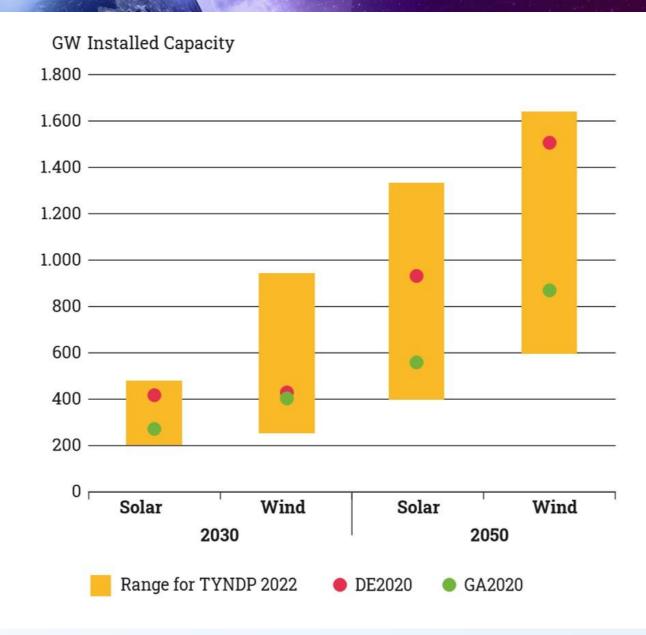
	Energy		
	Distributed Energy	Global Ambition	
	European autonomy with renewable and decentralised focus	Global economy with centralised low carbon and RES options	
Green Transition	Compliant with the 1.5°C target of the Paris Agreement At least -55% reduction in 2030, climate neutral in 2050		
Driving force	Transition initiated on local/national level (prosumers)	Transition initiated on a European/international level	
of the energy transition	Aims for EU energy autonomy through maximisation of RES and smart sector integration (P2G/L)	High EU RES development supplemented with low carbon energy and imports	
Energy intensity	Reduced energy demand through circularity and better energy consumption behaviour	Priority is given to decarbonisation of energy supply. Increased economic activity offsets some of the energy savings.	
	Digitalisation driven by prosumer and variable RES management	Digitalisation and automation reinforce competitiveness of EU business and industry, leading to increase export of goods.	
Technologies	Focus of decentralised technologies (PV, batteries, etc) and smart charging	Focus on large scale technologies (offshore wind, large storage)	
	Focus on electric heat pumps and district heating	Focus on hybrid heating technology	
	Higher share of EV, with e-liquids and biofuels supplementing for heavy transport	Wide range of technologies across mobility sectors (electricity, hydrogen and biofuels)	
	Minimal CCS and nuclear	Integration of nuclear and CCS	

	Energy		
	Distributed Energy	Global Ambition	
	European autonomy with renewable and decentralised focus	Global economy with centralised low carbon and RES options	
Green Transition	Compliant with the 1.5°C target of the Paris Agreement At least -55% reduction in 2030, climate neutral in 2050		
Driving force of the energy transition	I Aims for EU energy autonomy through maximisation of RES and smart — I High EU RES development supplemented with low carbon energy		
Energy	Reduced energy demand through circularity and better energy consumption behaviour	Priority is given to decarbonisation of energy supply. Increased economic activity offsets some of the energy savings.	
intensity	Digitalisation driven by prosumer and variable RES management	Digitalisation and automation reinforce competitiveness of EU business and industry, leading to increase export of goods.	
Technologies	Focus of decentralised technologies (PV, batteries, etc) and smart charging Focus on electric heat pumps and district heating	Focus on large scale technologies (offshore wind, large storage) Focus on hybrid heating technology	
	Higher share of EV, with e-liquids and biofuels supplementing for heavy transport	Wide range of technologies across mobility sectors (electricity, hydrogen and biofuels)	
	Minimal CCS and nuclear	Integration of nuclear and CCS	

	Elleruv		
	Distributed Energy	Global Ambition	
	European autonomy with renewable and decentralised focus	Global economy with centralised low carbon and RES options	
Green Transition	Compliant with the 1.5°C target of the Paris Agreement At least -55% reduction in 2030, climate neutral in 2050		
Driving force of the energy transition	Transition initiated on local/national level (prosumers) Aims for EU energy autonomy through maximisation of RES and smart sector integration (P2G/L)	Transition initiated on a European/international level High EU RES development supplemented with low carbon energy and imports	
Energy intensity	Reduced energy demand through circularity and better energy consumption behaviour	Priority is given to decarbonisation of energy supply. Increased economic activity offsets some of the energy savings.	
	Digitalisation driven by prosumer and variable RES management	Digitalisation and automation reinforce competitiveness of EU business and industry, leading to increase export of goods.	
Technologies	Focus of decentralised technologies (PV, batteries, etc) and smart charging	Focus on large scale technologies (offshore wind, large storage)	
	Focus on electric heat pumps and district heating	Focus on hybrid heating technology	
	Higher share of EV, with e-liquids and biofuels supplementing for heavy transport	Wide range of technologies across mobility sectors (electricity, hydrogen and biofuels)	
	Minimal CCS and nuclear	Integration of nuclear and CCS	

Quantitative ranges

2 December 2020

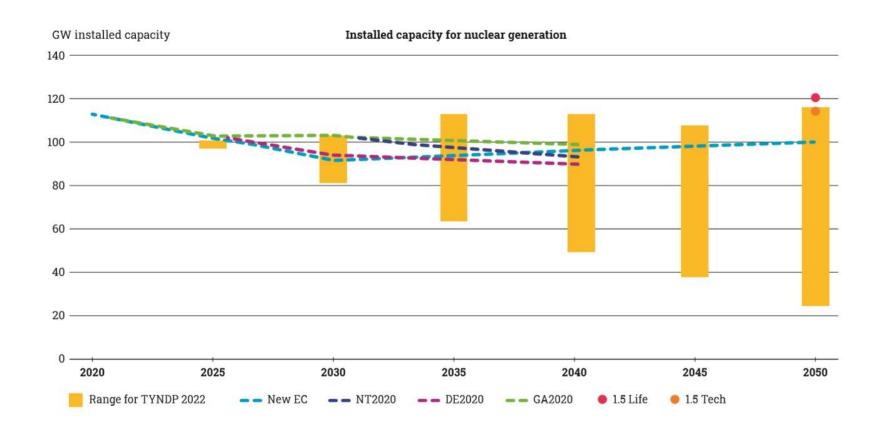

Quantitative ranges: the spectrum for solar and wind deployment

What flows into the investment decision?

- → Annualized cost assumptions
- → Technology and country specific climate data
- → Storyline specific assumptions

Scenario DE: solar PV and onshore wind with highest development. Significant flexibility at network and demand level

Scenario GA: Offshore wind and large scale solar farms will be dominant. Higher imports result in lower deployment of wind and solar.

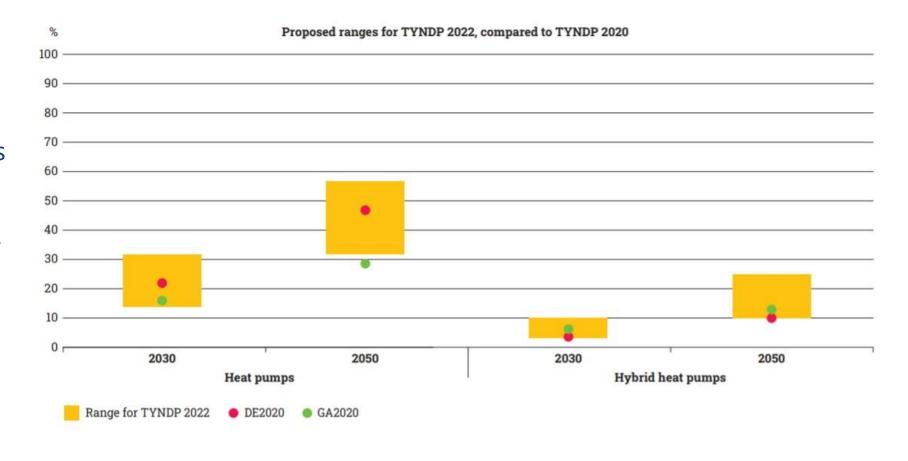


Quantitative ranges: governmental policies in the nuclear strategy

How do the scenarios capture nuclear energy?

Scenario DE: no new reactors and phase out of existing ones according to national policies

Scenario GA: Some EU countries extend the use of nuclear as a complement of RES development

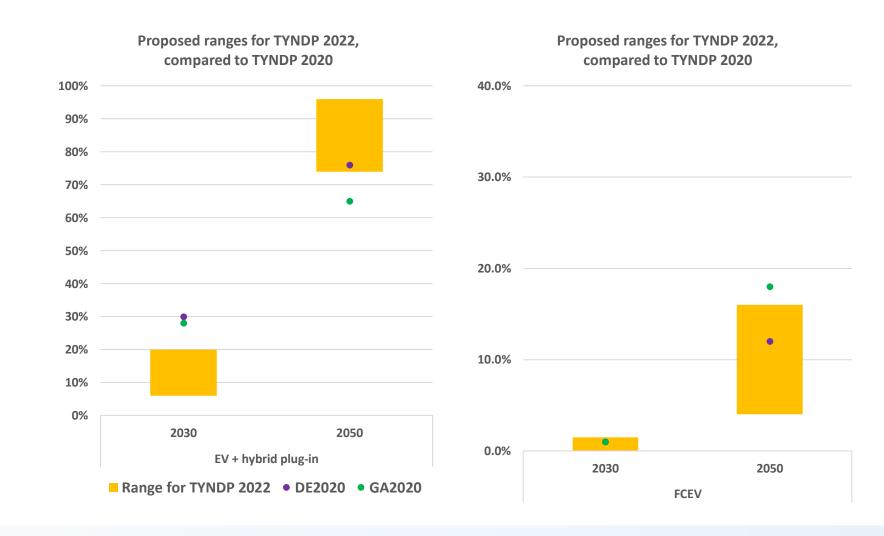


Quantitative ranges: domestic heating technologies

How to decarbonise and increase efficiency of domestic heating?

Scenario DE: Primary focus on all-electric heat pumps and connection to collective heating networks

Scenario GA: Through availability of renewable gas imports, hybrid heat pumps are a meaningful alternative to all-electric in certain countries



Quantitative ranges: Renewable mobility

How to reduce emissions in the transport sector?

Scenario DE: electric vehicles provides efficiency gains to enhance energy autonomy, And will provide needed flexibility to the electricy infrastructures

Scenario GA: wider range of clean mobility technologies with fuel cells as a meaningful option.

2 December 2020

The role of flexibilities towards a decarbonised system

Flexibility is slightly different to other key parameters in that the development of each flexibility technology is dependent from a wide range of other parameters **still to be quantified** since they are an **output of the electricity market models**

Batteries

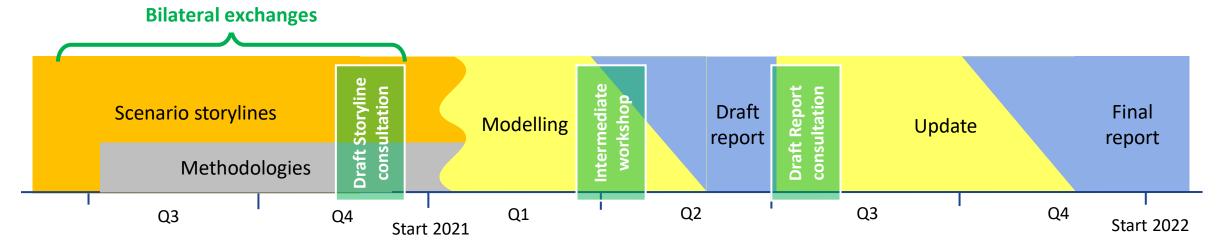
→ Higher residential batteries in DE due to higher decentralized RES and prosumer behavious.

Demand Side Response

→ Market DSR will reflect TSO trajectories, regession analysis and external studies

Electrolysers

→ Capacitiy depends on hydrogen demand and configuation for electrolysers

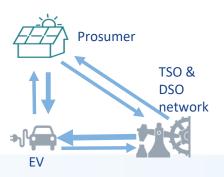


Next steps in the scenario building process

Overall timeline towards scenario finalization

- ENTSO-E and ENTSOG will close by February the first step of the scenario building process:
 - Storylines finalization on the basis of the on-going public consultation (DE/GA) and National Trend data collection
 - Finalization of modelling methodology enhancements
- During the first half of 2021 the storylines will be translated in fully-fledged scenarios:
 - Mid-process workshop to inform about the process and to collect necessary data (e.g. gas supply)
 - Providing key information for upcoming TYNDP and CBA
- Scenario finalization on the basis of the public consultation
 - Partial update of the scenario modelling to achieve balance between public consultation feedback, latest entsoglatesetend TYNDP timeline 020

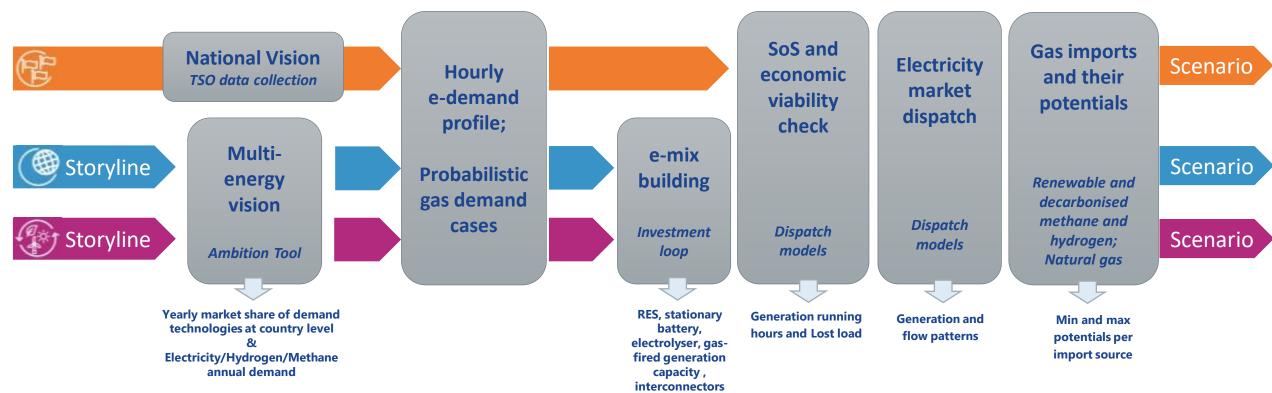
Next Steps: Storyline and methodology finalization


The consultation of the draft storylines for Global Ambition and Distributed Energy scenarios will span from 3 November to 15 December 2020

- Feedback will enable a further refinement of storyline drivers and related quantitative ranges
- Final Storyline report to be published in February 2021

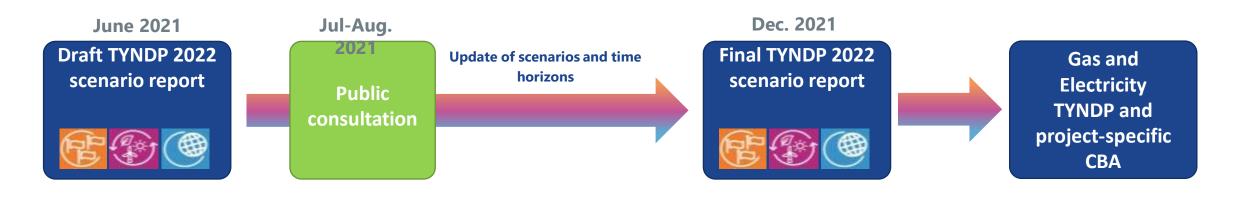
To ensure timely delivery, ENTSOG/E are closing modelling methodology developments and focus on:

- Power-to-Gas/Liquid: modelling the wide range of configuration between RES, electrolysis, electricity and gas system in line with European and national hydrogen strategies
- Improvement of the Ambition Tool by increased granularity of input parameters
- Prosumer behavior at distribution level with the support of DSO associations
- District heating ability to combine local energy sources, recovered heat and network energy
- Renewable and decarbonised gas import potentials



The scenario modelling process

Making transparent the translation of storylines into fully-fledged scenarios



• An intermediate workshop will be organised early Q2 2021 to inform stakeholders on process status and collect possible additional data (e.g. gas supplies)

Scenario finalization

- The publication of the Draft TYNDP 2022 Scenario report is expected for mid-2021. It will cover:
 - The scenario report
 - An extended input and output dataset
 - A visualisation platform
- Public consultation and subsequent processes

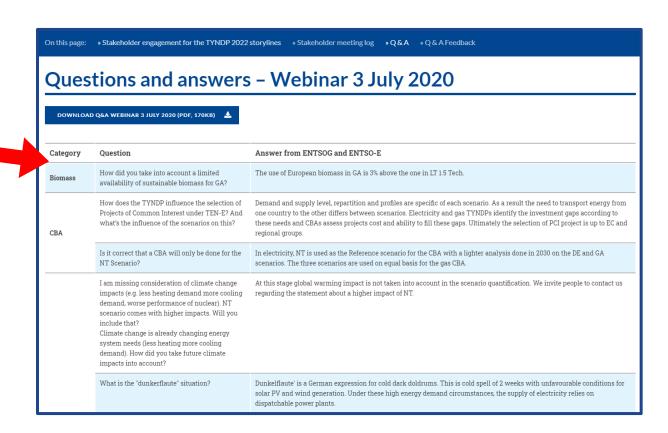
The Final TYNDP 2022 Scenario report will ensure transparency on final scenarios description and use.

Stakeholder Engagement

Stakeholder Engagement in the TYNDP 2022 – Our Goals

Stakeholder Engagement from Day 1

Input on Key Parameters


Consultation on Hard Data – Not just Concepts

Transparent
Documentation of
Interactions

Answering Stakeholders' Questions

- 42 questions received from stakeholders after webinar on 3 July
- All answers can be found on the dedicated scenarios website
- Categories included:
 - Projections for new technologies
 - Role of fossil fuels
 - Modelling PtG
 - Disruptive technologies
 - Stakeholder interaction

Don't Forget! All stakeholders have the opportunity to ask questions during today's workshop

Bilateral Engagement

- Bilateral meetings between Scenario
 Building Team and different organisations
 - Full table of stakeholder meetings (up to start of Consultation) available online
- Improving the quality of the storylines by:
 - Using the latest data from experts
 - Asking specific questions to solve issues in the storyline development
 - Comparing our work with studies and analysis from other organisations

Bilateral engagement is a transparent and open process: We are always open to new perspectives

Stakeholder meeting log		
Date	External Stakeholder(s)	Topic
18.06.2020	EuroHeat	District Heating Data and Modelling
19.06.2020	DSO Expert Group	Roadmap for Joint Scenario Building
22.06.2020	Joint Research Center (JRC)	IDEES dataset; POTENCIA model
08.07.2020	ACER	Feedback from 2020 cycle and way forward
15.07.2020	DSO Expert Group	Debriefing Stakeholder Webinar
17.07.2020	DG ENER	LTS Scenarios parameters
21.07.2020	AIT (Austria)	District Heating Data and Modelling
23.07.2020	IFIEC	Industrial sector roadmaps for decarbonisation
27.08.2020	Eurelectric	General Comments on TYNDP 2022
09.09.2020	RWTH Aachen	PtX modelling
22.09.2020	Eurogas DNVGL	Study presentation
23.09.202	CAN Europe/EEB	PAC Scenario presentation
06.10.2020	DSO Expert Group	Distribution network modelling
14.10.2020	EDF	Storyline Consultation
22.10.2020	Hydrogen Europe	Future development of hydrogen and hydrogen technologies

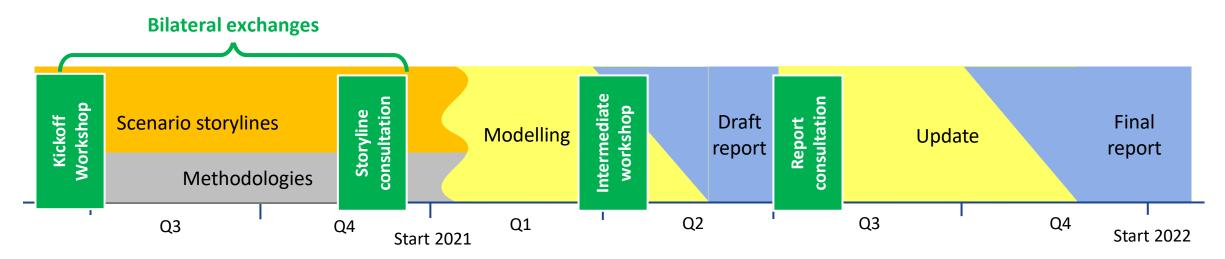
Draft Storyline Report: Which elements are different than 2020?

How did stakeholder feedback affect our consultation process?

- Stakeholder Matrix in 2020 was considered unclear
 - The matrix has been adjusted to provide more clarity
 - Backed up by greater quantitative elements
- Differentiation between the storylines was not always clear
 - Storyline diversity is presented directly in the Storyline matrix
 - Greater contrasts between technologies and energy carriers

2 December 2020

Which elements have we added in the 2022 Draft Storyline Consultation?


- Benchmarking against other studies
 - Provides greater context and comparison for the Draft Storylines
- More focus on quantitative topics
 - Consultation of data ranges for key topics

When and how can stakeholders interact with the scenario building process?

When?	What?
3 November – 15 December 2020	Draft Storyline Report Consultation + Workshop
Q1/Q2 2021	Intermediate Workshop on Gas/Hydrogen Import Potential
Q3 2021	Draft Scenario Report Consultation + Workshop

- Two official public consultation phases
 - Results of the consultation will be published subsequently
- Four public workshops
 - Q+A tool will be available at every workshop
 - After each workshop outstanding questions will be answered by the Scenario Building Team
- Bilateral exchanges with other organisations

Thank you for your attention

Consultation: ENTSO-E - ENTSOG 2022 Scenario Storyline Consultation - European Network of

<u>Transmission System Operators for Electricity - Citizen Space</u>

Website: <u>TYNDP 2022 Scenarios – Draft Storyline Report by ENTSOG and ENTSO-E (entsos-tyndp-scenarios.eu)</u>

Location: Online Date: 02.12.20

