

entsoe

6th WORKSHOP

Electricity long-term flow-based allocation

Friday, 22.03.2024 09:00 - 12:00 CET Online

www.acer.europa.eu
www.entsoe.eu

Housekeeping rules

Questions shall be posed using the Slido tool within Microsoft Teams

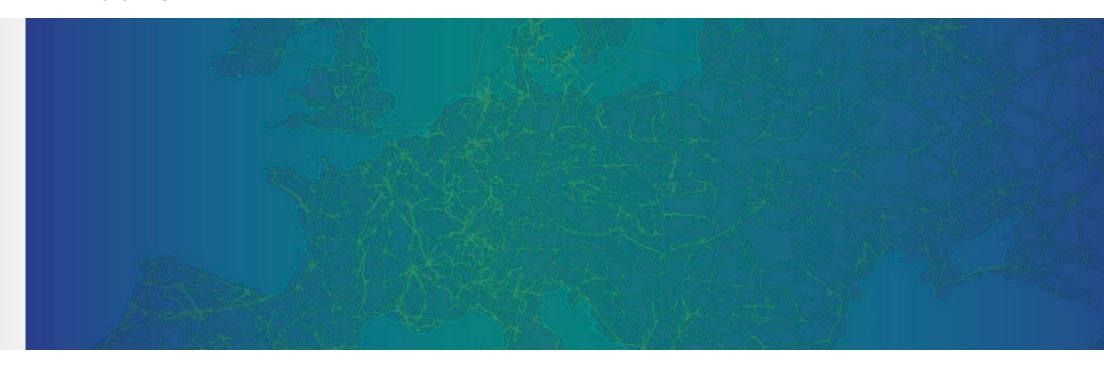
Use the direct link: https://app.sli.do/event/4Jr
QofwANvNgPD3RuNu6gw

Keep your microphone muted unless the chair gives you the floor

Questions from other participants can be 'liked' to increase their visibility

Slides from this webinar will be uploaded to ACFR website

Substance-related questions will be addressed during the relevant Q&A/discussion session; although they can be posed at any point



Indicative time	Webinar items	
08:50 - 09:00	Webinar open for log-in	Starts promptly at 09:00
09:00 - 09:10	Introductory Remarks Zoran VUJASINOVIC, ACER	
09:10 - 09:20	Long-term flow-based allocation: implementation - timeline and basic information - timeline and basic information VILSSON, ENTSO-E	nation
09:20 - 09:50	Long-term flow-based allocation: Simulation of results Cyriac DE VILLENFAGNE, ENTSO-E	
09:50 - 10:10	ACER's views Martin POVH, ACER	
10:10 - 10:35	Market participants' views Jerome LE PAGE, EFET	
10:35 - 10:45	Ways forward Martin POVH, ACER	
10:45 - 11:50	Discussion all	
11:50 - 12:00	Closing Remarks Christophe GENCE-CREUX, ACER	

AGENDA

LTFBA Workshop with ACER and MPs

22 March 2024

Agenda

- 1. Project implementation and next steps
- 2. Simulation results

Indicative time	Webinar items
08:50 - 09:00	Webinar open for log-in
09:00 - 09:10	Introductory Remarks Zoran VUJASINOVIC, ACER
09:10 - 09:20	Long-term flow-based allocation: implementation - timeline and basic info Jim VILSSON, ENTSO-E
09:20 - 09:50	Long-term flow-based allocation: Simulation of results Cyriac DE VILLENFAGNE, ENTSO-E
09:50 - 10:10	ACER's views Martin POVH, ACER
09:50 - 10:10 10:10 - 10:35	7102110 110110
	Martin POVH, ACER Market participants' views
10:10 - 10:35	Martin POVH, ACER Market participants' views Jerome LE PAGE, EFET Ways forward

1. Project implementation and next steps

Introduction

- Through the process of implementation, the LTFBA scope has been extended multiple times.
- Requirements have changed significantly (driven by requests from TSOs and ACER).
- LTFBA competes with other strategic projects (such as the launch of IDAs or 15 min MTU) for the same TSO, JAO and vendor resources.

The current go-live date for LTFBA project in November 2024 is not feasible

• November 2025 would be the earliest date possible for the new go-live date of the project (Assuming no significant additions to the project scope).

1. Project implementation and next steps

Next steps

The current go-live date for LTFBA project in November 2024 is not feasible

Upcoming EMDR discussions & EC assessment (Volume determination)

Simulation results - (Lower capacity allocation & low allocation in some BZBs)

Market Participants' strong opposition (concerns shared by some TSOs)

Conceptual assessment triggered by TSOs

1. Potential further discussion on alternative models

Potential forward market models

		Primary Market	
	Improving the current framework at JAO	Moving to Obligations (=Zonal futures spreads)	Virtual Hub
Features	Model 1.0	Model 2.0	Model 3.0
A: Increasing the frequency of LTTRs auctions (simplified)	х	х	x – co-opt.
B: Increasing LTTRs' maturities to at least 2 years (simplified)	X (for a secondary market to work properly maintenance periods should be kept unchanged between different auctions for same product)	Х	x – co-opt.
C: Switching from Options to Obligations		Х	Х
D: Adapting full firmness	x (optional – no full support)	x	х
Implementation effort	+	++	+++

On top of these models, fundamentals and conceptual discussions are also needed to assess if the objectives of FCA can be achieved. This includes, but is not limited to, volume determination, due to dependencies on the objectives.

2.- LTFBA project update - Simulation results

LTFBA simulations

Background

- Based on the request from ACER, LT FBA in cooperation witch Core LTCC has prepared a new round of allocation simulations to provide results based on robust tooling for both capacity calculation (CCCt v4.0.0) and allocations (allocation algorithm v2 and v3)
- The presentation of these results aims to provide clear insights on representative outputs of the current LT FBA + Core LTCC process.

Conclusions

- Multiple simulations have been performed enhancing each time the model and providing results for different inputs (Variable MinRAM capacity, Different order books, Adapted and normalized bid prices & Different FB Domains)
- All precedent and new simulations however lead to the same conclusion:
 - Overall capacity allocated in FB is lower than in NTC
 - FB results in low/zero capacity allocation on some borders in both directions
 - Increasing the MinRAM increases the overall volume of allocated capacity but does not mitigate the effect of low/zero allocation on some borders.
 - This low/zero allocated volume on some borders can be explained by the design of the allocation algorithm. Its objective function is to maximize welfare, whereby welfare is defined as congestion revenue (bid price * accepted volume). Hence the borders are put in competition.

2.- LTFBA project update - Simulation results

LTFBA simulations

Overview of 2nd round of allocation simulations in the next slides

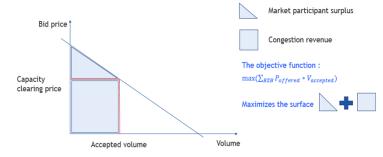
- 2023 year (results from this year should be considered as most representative)
 - FB domains: 2023 12 TS 20% 30% 40% (from INT// run dry run inputs)
 - 2023 Historical bids, Normalised bids (Normalisation to neglect price of bids).
 - Weighted Normalised (Normalisation also neglects volume of orders).
- 2022 year
 - FB domains: 2023 12 TS 20% 30% 40% (from 1st round simulations) Historical bids
 - Disclaimer: 2023 FB domains were used as the 2022 domains were too preliminary

General Disclaimers

- The order books used for simulations were the ones used for NTC historical auctions
- For 2022 there were no yearly allocation on Slovenia-Hungary border (as there was no interconnector) and on 2022 & 2023 there were no yearly allocations for Core Polish borders (as there was no yearly capacity offered)
- The bids provided by MPs did not consider direct competition between borders (eg. bids did not consider geographical sensitivity on CNECs and 'flow factor competition' based on PTDF-factors)
- The FB domains provided by Core LTCC include a splitting factor (80%) as is defined in Core LTSRM (Long Term Splitting Rule Methodology)

Reminder of previous allocations simulations run & presented

- In March 2023 TSOs prepared & presented a first round of simulations to regulators & MPs computed with (provided in Annex)
 - Preliminary FB domain from Core LTCC 4TS run on prototype CCCt wo splitting
 - A prototype of the allocation algorithm
 - Incomplete set of Bids: bids from the 50Hz CZ Border were not included in the simulation for the DE –CZ border and only the TenneT bids were used


2.- LTFBA project update - Simulation results

Reminder: Currently 20% MinRAM is required by the Core LTCCM. Increasing the MinRAM to a higher value would need to be agreed upon by all Core TSOs and there is currently no consensus on this point.

Overview of simulations for 2022 & 2023 and comparison with historical NTC auctions

	Formulation	Yearly Auction 2023 (NTC)	FB Auction Bids 23 – MinRAM 20%	NTC vs FB	FB Auction Bids 23 – MinRAM 30%	NTC vs FB	FB Auction Bids 23 – MinRAM 40%	NTC vs FB	Yearly Auction 2022 (NTC)	FB Auction Bids 22 – MinRAM20 %	NTC vs FB	FB Auction Bids 22 – MinRAM 30%	NTC vs FB	FB Auction Bids 22 – MinRAM 40%	NTC vs FB
Allocated capacity (MW)	Sum Allocated Capacity per BZB	18,139	8,510	-53%	11,816	-35%	14,141	-22%	20,840	8,093	-61%	11,180	-46%	14,051	-33%
Congestion Revenue (EUR/MTU)	Sum Allocated Capacity * Clearing Price	202,904	170,091	-16%	197,040	-3%	223,519	+10%	76,175	65,409	-14%	72,546	-5%	82,342	+9%
Total welfare (EUR/MTU)	Objective function optimize the (accepted volume)*(Bid price).	273,890	221,830	-19%	271,106	-1%	323,911	+18%	98,848	81,802	-17%	101,328	+3%	120,621	+22%
Market participant s' Surplus (EUR/MTU)	Revenue	70,986	51,739	-27%	74,066	+4%	100,391	+40%	22,673	16,393	-28%	28,781	+27%	38,278	+68%

- TSOs conclude that with the current allocation algorithm, results will lead to 0MW or low values on certain borders regardless of the bids or MinRAM levels provided. Possible reasons could be:
 - The objective function;
 - The competition among borders
- TSOs highlight that in all cases there is lower allocated capacity with FB than with NTC
- TSOs highlight that with 20% Min RAM we have lower social welfare than in NTC.
- TSOs highlight that increasing MinRAM levels results with better social welfare and congestion revenue
 - See annex 2 with additional simulation results including Polish bids

Overview of results of 2023 simulations* with historical bids & comparison with ATC historical bids

20RAMHisto		30RAMHisto			40RAMHisto			BasisATCHis		
rical23		rical23			rical23			torical23		
	TotalAccepted		TotalAccepted	auction_pri		TotalAccepted			Accepted	Auction Price
BZ to BZ	Volume	auction_price BZ to BZ	Volume	ce	BZ to BZ	Volume	auction_price	BZ to BZ	Volume (MW)	(€)
AT_to_CZ	5,00		5,00		AT_to_CZ	36,00	3,48	AT_to_CZ	200,0	2,11
AT_to_DE	0,00	7,70 AT_to_DE	0,00	6,72	AT_to_DE	41,00	4,79	AT_to_DE	1960,0	0,97
AT_to_HU	104,54	13,67 AT_to_HU	171,84	12,31	AT_to_HU	222,31	11,41	AT_to_HU	250,0	10,82
AT_to_SI	48,00	14,14 AT_to_SI	133,52	12,50	AT_to_SI	182,57	11,33	AT_to_SI	300,0	9,22
BE_to_DE	20,00	37,11 BE_to_DE	25,00	35,84	BE_to_DE	110,00	32,39	BE_to_DE	260,0	27,40
BE_to_FR	313,00	92,35 BE_to_FR	330,79	91,03	BE_to_FR	457,00	82,17	BE_to_FR	250,0	98,00
BE_to_NL	30,00	31,86 BE_to_NL	30,00	32,12	BE_to_NL	100,00	25,42	BE_to_NL	473,0	13,24
CZ_to_AT	120,80	16,41 CZ_to_AT	128,00	16,19	CZ_to_AT	217,00	14,79	CZ_to_AT	200,0	15,11
CZ_to_DE	422,00	3,47 CZ_to_DE	595,88	2,88	CZ_to_DE	1213,57	1,80	CZ_to_DE	600,0	3,12
CZ_to_SK	389,00	9,31 CZ_to_SK	449,00	8,45	CZ_to_SK	430,00	8,67	CZ_to_SK	600,0	7,38
DE_to_AT	586,97		836,31	23,07	DE_to_AT	762,92	23,23	DE_to_AT	1960,0	18,44
DE_to_BE	215,00	13,20 DE_to_BE	216,56	13,16	DE_to_BE	325,00	10,80	DE_to_BE	260,0	12,26
DE_to_CZ	31,00	11,22 DE_to_CZ	63,00	9,15	DE_to_CZ	71,00	8,93	DE_to_CZ	300,0	7,77
DE_to_FR	1388,75	63,00 DE_to_FR	1734,00	55,34	DE_to_FR	2135,36	47,25	DE_to_FR	600,0	80,01
DE_to_NL	219,06	16,67 DE_to_NL	434,49	13,15	DE_to_NL	656,07	10,12	DE_to_NL	827,0	8,99
FR_to_BE	150,00		458,54		FR_to_BE	301,56	9,89	FR_to_BE	1450,0	4,43
FR_to_DE	1371,07		1966,21	4,58	FR_to_DE	2056,02	4,26	FR_to_DE	1000,0	6,95
HR_to_HU	92,16		168,00	6,19	HR_to_HU	183,51	5,71	HR_to_HU	400,0	3,50
HR_to_SI	10,00		23,00	4,67	HR_to_SI	36,00	3,96	HR_to_SI	500,0	1,66
HU_to_AT	25,00		25,00	7,86	HU_to_AT	25,00	7,92	HU to AT	250,0	3,58
HU_to_HR	312,78		358,00		HU_to_HR	400,00	6,13	HU_to_HR	500,0	4,27
HU_to_RO	337,61		522,94	-	HU_to_RO	746,28	1,69	HU_to_RO	350,0	2,56
HU_to_SI	2,00	12,07 HU_to_SI	2,00	10,57	HU_to_SI	3,00	9,55	HU_to_SI	150,0	4,55
HU_to_SK	904,00		1277,31		HU_to_SK	953,95	0,56	HU_to_SK	800,0	0,67
NL_to_BE	11,52		65,00		NL_to_BE	138,00	15,45	NL_to_BE	473,0	10,33
NL_to_DE	0,00		72,95		NL_to_DE	320,81	29,44	NL_to_DE	827,0	19,27
RO_to_HU	295,71		459,05		RO_to_HU	630,71	4,84	RO_to_HU	350,0	7,37
SI_to_AT	106,00		87,00		SI_to_AT	69,00	5,17	SI_to_AT	300,0	2,23
SI_to_HR	583,00		690,00		SI_to_HR	605,00	1,72	SI_to_HR	500,0	2,32
SI_to_HU	18,00		38,00		SI_to_HU	35,00	6,88	SI to HU	150,0	5,05
SK_to_CZ	135,00		113,71		SK_to_CZ	318,97	0,51	SK to CZ	400,0	0,41
SK_to_HU	263,00	7,68 SK_to_HU	336,25	7,32	SK_to_HU	358,00	7,21	SK to HU	699,0	5,91
TotalAccept		TotalAccept			TotalAccept			TotalAccept	170,0	- 70 =
edVolume	8.510	edVolume	11.816		edVolume	14.141		edVolume	18.139	
Congestion		Congestion			Congestion			Congestion	10,133	
revenue	170.090,79	revenue	197.040,39		revenue	223.519,69		revenue	202.904,92	
Social		Social			Social				202.904,92	
Welfare	221.830,00		271.106,00		Welfare	323.911,00		Social	272.000.00	
wellare	221.830,00	Wenare	271.106,00		wellare	323.911,00		Welfare	273.890,00	

Observations

Border having low capacity:

- The results of simulations in FB show 9 borders where one direction has an allocated capacity under the 100MW
- 2 borders (BE NL & HU SI) where both directions have an allocated capacity under the 100MW.
- As comparison, the smallest value allocated in NTC is 150MW.

Increasing the MinRAM does not affect bidding zone borders equally, but does not solve the low allocation on some BZBs either

Disclaimer: Polish borders were not included in this overview as there were no allocations on polish borders in 2023

Borders with <100MW allocated
Borders with FB values >> Historical ATC allocations

entso

* 2022 Simulation results & 2023 Normalised results are available in annex

12

Overview of results of 2022 simulations with historical bids & comparison with ATC historical bids

20RAMHisto		30R.	AMHisto			40RAMHisto			BasisATCHis		
rical22		rica				rical22			torical22		
	TotalAccepted			TotalAccepted	auction_pri		TotalAccepted			Accepted	Auction
BZ to BZ	Volume	auction_price BZ to		Volume	ce	BZ to BZ		auction_price		Volume (MW)	Price (€)
AT_to_CZ	0,00	4,55 AT_	to_CZ	0,00	3,90	AT_to_CZ	40,00		AT_to_CZ	250,0	
AT_to_DE	1,00	4,56 AT_	to_DE	1,00	3,97	AT_to_DE	1,00	-/	AT_to_DE	2940,0	-
AT_to_HU	2,00	9,55 AT_	to_HU	77,28	8,15	AT_to_HU	140,86	7,55	AT_to_HU	300,0	-
AT_to_SI	80,80	6,80 AT_	to_SI	180,15	6,26	AT_to_SI	246,79	5,85	AT_to_SI	350,0	
BE_to_DE	0,00	11,95 BE_	to_DE	0,00	12,03	BE_to_DE	0,00	10,92	BE_to_DE	260,0 250,0	
BE_to_FR	191,83	29,70 BE_	to_FR	134,62	30,32	BE_to_FR	372,20	27,89	BE_to_FR	473,0	
BE_to_NL	0,00	11,89 BE_	to_NL	0,00	11,88	BE_to_NL	0,00	9,72	BE_to_NL CZ_to_AT	200,0	
CZ_to_AT	75,16	5,18 CZ_1	to_AT	76,00	5,06	CZ_to_AT	231,00	4,23	CZ_to_AT	400,0	
CZ_to_DE	301,95	1,51 CZ_t	to_DE	456,67	1,21	CZ_to_DE	1144,44	0,84	CZ_to_DL CZ_to_SK	700,0	
CZ_to_SK	485,00	4,08 CZ_1	to_SK	720,00	3,44	CZ_to_SK	596,00	3,71	DE to AT	2940,0	
DE_to_AT	483,00	6,97 DE_	to_AT	675,45	6,73	DE_to_AT	563,46	6,78	DE_to_BE	260,0	
DE_to_BE	48,44	6,45 DE_	to_BE	287,03	4,07	DE_to_BE	202,00		DE _to_CZ	120,0	
DE_to_CZ	210,00	3,29 DE_	to_CZ	480,00	2,81	DE_to_CZ	512,00		DE_to_FR	600,0	30,26
DE_to_FR	1659,00	23,69 DE_	to_FR	2189,00	18,83	DE_to_FR	2608,76		DE_to_NL	827,0	4,83
DE_to_NL	214,52	6,82 DE_	to_NL	338,91	6,07	DE_to_NL	638,97	5,28	FR_to_BE	1400,0	1,75
FR_to_BE	14,49	8,11 FR_1	to_BE	197,37	3,57	FR_to_BE	46,73	5,07	FR_to_DE	1000,0	4,34
FR_to_DE	1482,11	3,65 FR_1	to_DE	2146,25	2,97	FR_to_DE	2684,32	2,60	HR_to_HU	500,0	
HR_to_HU	0,00	4,41 HR	to_HU	0,00	3,70	HR_to_HU	0,00	3,60	HR_to_SI	600,0	0,07
HR to SI	55,00	1,41 HR	to SI	55,00	1,34	HR to SI	55,00	1,42	HU_to_AT	300,0	
HU_to_AT	75,00	2,02 HU_	_to_AT	10,00	2,46	HU_to_AT	20,00	2,19	HU_to_HR	600,0	0,67
HU_to_HR	208,00	2,82 HU	_to_HR	208,00	2,97	HU_to_HR	223,00	2,44	HU_to_RO	350,0	
HU_to_RO	393,19	1,21 HU_	_to_RO	557,07	1,00	HU_to_RO	754,31	0,77	HU_to_SI	0,0	
HU_to_SK	447,00	0,17 HU_	_to_SK	723,00	0,11	HU_to_SK	924,00	0,08	HU_to_SK NL_to_BE	800,0 473,0	
NL_to_BE	0,00	22,66 NL_	to_BE	0,00	6,96	NL_to_BE	219,00	4,29	NL_to_DE	827,0	
NL_to_DE	0,00	19,15 NL_	to_DE	0,00	12,04	NL_to_DE	5,00	9,38	RO_to_HU	350,0	
RO_to_HU	310,02	2,53 RO_	_to_HU	482,18	2,08	RO_to_HU	506,00	1,95	SI_to_AT	350,0	0,23
SI_to_AT	65,00	0,71 SI_t	.o_AT	19,00	0,99	SI_to_AT	15,00		SI to HR	600,0	
SI_to_HR	410,00	1,26 SI_t	o_HR	461,00	1,03	SI_to_HR	425,00	1,15	SI_to_HU	0,0	0,00
SK_to_CZ	224,00	0,18 SK_t	to_CZ	1,00	0,78	SK_to_CZ	111,40	0,28	SK_to_CZ	600,0	0,07
SK_to_HU	656,18	4,42 SK_t	to_HU	704,16	4,30	SK_to_HU	765,00	4,16	SK_to_HU	700,0	4,31
TotalAccept		Tota	alAccept			TotalAccept			TotalAccept		
edVolume	8.093		olume	11.180		edVolume	14.051		edVolume	20.840	
Congestion			gestion			Congestion			Congestion		
revenue	65.409,18		enue	72.546,69		revenue	82.342,61		revenue	76.175,48	
Social		Soci				Social			Social		
Welfare	81.802,00	Wel	lfare	101.328,00		Welfare	120.621,00		Welfare	98.848,00	

Observations

Border having low capacity:

- The results of simulations in FB show 9 borders where one direction has an allocated capacity under the 100MW
- 2 borders (BE NL & HU SI) where both directions have an allocated capacity under the 100MW.
- As comparison, the smallest value allocated in NTC is 150MW.

Increasing the MinRAM does not affect bidding zone borders equally, but does not solve the low allocation on some BZBs either

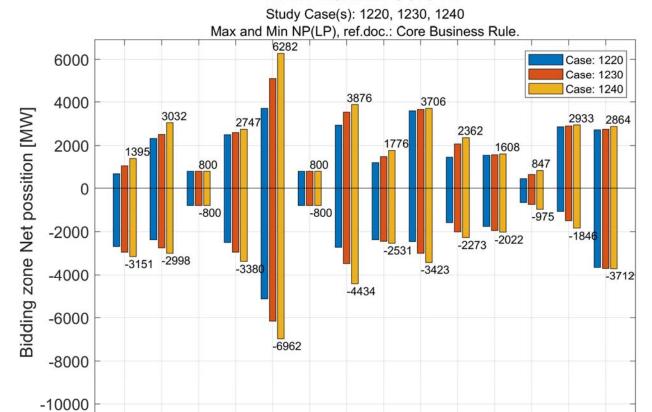
Disclaimer: Polish borders were not included in this overview as there were no allocations on polish borders in 2023

Borders with <100MW allocated
Borders with FB values >> Historical ATC allocations

entso

Annexes

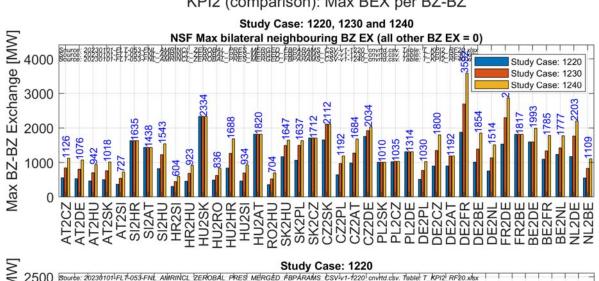
Annex 1 – Simulation results

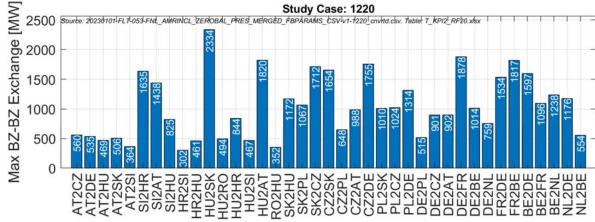

Overview of results of 2023 simulations with normalised bids & weighted normalised bids

20RAMNor			30RAMNor			40RAMNor											
malised23 BZ to BZ	TotalAccepted\ a	uction price	malised23	TotalAccepted\ au	ction pric	malised23	TotalAccepted\	auction price	20RAMWNo rmalised23			30RAMWNo rmalised23			40RAMWNo rmalised23		
AT to CZ	26		AT to CZ	86		AT to CZ	140	2,30		TotalAccepted\ au	iction price		TotalAccepted\			TotalAcceptedV au	ction price
AT to DE	191		AT to DE	449		AT_to_DE	561	2,70	AT to CZ	140		AT to CZ	304		AT to CZ	550	6,67
AT to HU	0		AT to HU	20		AT to HU	20	3.41	AT to DE	0		AT to DE	0		AT to DE	5	7,12
AT to SI	1		AT to SI	50		AT to SI	112	2.68	AT to HU	0	20,11	AT to HU	0	16,73	AT to HU	20	12,43
BE to DE	625		BE to DE	346		BE to DE	378	2,05	AT_to_SI	15	20,06	AT_to_SI	30	14,58	AT_to_SI	40	10,96
BE to FR	633		BE_to_FR	720		BE_to_FR	819	1,70	BE_to_DE	601	6,02	BE_to_DE	380	7,47	BE_to_DE	443	7,08
BE to NL	360		BE to NL	379		BE to NL	570	1,96	BE_to_FR	616	6,66	BE_to_FR	738	6,26	BE_to_FR	992	5,25
CZ to AT	141	2,51	CZ to AT	183	2,42	CZ to AT	275	2,17	BE_to_NL	415	6,23	BE_to_NL	313	7,14	BE_to_NL	464	5,48
CZ_to_DE	680	2,05	CZ_to_DE	854	1,84	CZ_to_DE	1.223	1,36	CZ_to_AT	372		CZ_to_AT	537		CZ_to_AT	561	7,10
CZ_to_PL	0	1,43	CZ_to_PL	0	2,07	CZ_to_PL	0	1,59	CZ_to_DE	384		CZ_to_DE	349		CZ_to_DE	714	3,88
CZ_to_SK	346	1,88	CZ_to_SK	438	1,65	CZ_to_SK	465	1,57	CZ_to_PL	0		CZ_to_PL	0		CZ_to_PL	0	5,40
DE_to_AT	25	3,16	DE_to_AT	271	2,04	DE_to_AT	82	2,38	CZ_to_SK	407		CZ_to_SK	666		CZ_to_SK	689	5,61
DE_to_BE	276	2,14	DE_to_BE	125	2,95	DE_to_BE	222	2,34	DE_to_AT	0		DE_to_AT	0		DE_to_AT	0	7,69
DE_to_CZ	552		DE_to_CZ	905	,	DE_to_CZ	1.229	1,17	DE_to_BE	245 389		DE_to_BE DE to CZ	251 858		DE_to_BE DE to CZ	365 970	5,19 4,02
DE_to_FR	0		DE_to_FR	53		DE_to_FR	652	1,75	DE_to_CZ DE_to_FR	0		DE_to_FR	31		DE_to_FR	320	4,02
DE_to_NL	279		DE_to_NL	649		DE_to_NL	732	1,74	DE_to_FK DE to NL	280		DE_to_NL	688		DE_to_NL	858	2,50
DE_to_PL	0		DE_to_PL	0	,	DE_to_PL	0	1,81	DE_to_PL	0		DE to PL	0		DE to PL	0	5,80
FR_to_BE	1.163		FR_to_BE	988		FR_to_BE	900	2,97	FR_to_BE	973		FR to BE	879		FR to BE	912	2,57
FR_to_DE	663		FR_to_DE	806		FR_to_DE	726	2,11	FR_to_DE	715		FR_to_DE	806		FR_to_DE	614	3,34
HR_to_HU	21		HR_to_HU	128		HR_to_HU	133	3,36	HR to HU	24		HR to HU	114		HR to HU	118	14,07
HR_to_SI	10		HR_to_SI	46		HR_to_SI	61	2,78	HR_to_SI	23	18,63	HR_to_SI	106	13,06	HR_to_SI	146	11,73
HU_to_AT	320		HU_to_AT	220		HU_to_AT	225	2,28	HU_to_AT	243	7,22	HU_to_AT	208	8,01	HU_to_AT	173	8,27
HU_to_HR	487 242		HU_to_HR	477 516		HU_to_HR	492 579	1,98 1.58	HU_to_HR	400	7,47	HU_to_HR	361	7,89	HU_to_HR	416	6,68
HU_to_RO HU to SI	3		HU_to_RO HU to SI	11		HU_to_RO HU to SI	17	2,78	HU_to_RO	260		HU_to_RO	524		HU_to_RO	616	5,45
HU to SK	1.324		HU to SK	988		HU_to_SK	858	1,27	HU_to_SI	88 1.371		HU_to_SI	196		HU_to_SI	235 758	11,54
NL to BE	65		NL to BE	65		NL to BE	195	2,98	HU_to_SK NL to BE	98		HU_to_SK NL to BE	952 101		HU_to_SK NL_to_BE	288	4,29 5,27
NL to DE	250		NL_to_DE	925		NL_to_DE	888	1,85	NL to DE	310		NL_to_BE	927		NL to DE	863	3,59
PL to CZ	0		PL to CZ	0		PL_to_CZ	0			0		PL_to_CZ	0		PL_to_CZ	0	2,95
PL to DE	0		PL to DE	0		PL_to_DE	0		PL to DE	0		PL to DE	0		PL_to_DE	0	3,22
PL to SK	0		PL to SK	0		PL to SK	0	0,77	PL to SK	0		PL to SK	0		PL to SK	0	2,91
RO_to_HU	261	2,54	RO_to_HU	443	1,60	RO_to_HU	614	1,36	RO_to_HU	269	7,40	RO_to_HU	449	5,16	RO_to_HU	612	4,39
SI_to_AT	885	0,96	SI_to_AT	811	1,07	SI_to_AT	765	1,08	SI_to_AT	757	4,02	SI_to_AT	687	4,56	SI_to_AT	585	4,94
SI_to_HR	974	0,85	SI_to_HR	938	0,85	SI_to_HR	895	0,92	SI_to_HR	764	3,17	SI_to_HR	780	3,03	SI_to_HR	911	2,48
SI_to_HU	39		SI_to_HU	39	2,90	SI_to_HU	113	2,30	SI_to_HU	245		SI_to_HU	262		SI_to_HU	342	9,68
SK_to_CZ	497	1,17	SK_to_CZ	346	1,63	SK_to_CZ	557	1,15	SK_to_CZ	728		SK_to_CZ	418		SK_to_CZ	729	4,19
SK_to_HU	289		SK_to_HU	169		SK_to_HU	369	1,84	SK_to_HU	40		SK_to_HU	40		SK_to_HU	90	7,45
SK_to_PL	0	0,99	SK_to_PL	0	1,70	SK_to_PL	0	1,25		0		SK_to_PL	0		SK_to_PL	0	3,94
SummedAcc			SummedAcc			SummedAcc			SummedAcc			SummedAcc			SummedAcc		
eptedAcVol			eptedAcVol			eptedAcVol			eptedAcVol			eptedAcVol			eptedAcVol		
ume	10.727		ume	13.444		ume	15.268		ume	10.326		ume	12.955		ume	14.592	
SummedAcc			SummedAcc			SummedAcc			SummedAcc			SummedAcc			SummedAcc		
eptedHvdcV			eptedHvdcV			eptedHvdcV			eptedHvdcV			eptedHvdcV			eptedHvdcV		
olume	901		olume	0		olume	599		olume	846		olume	0		olume	808	
TotalAccept			TotalAccept			TotalAccept			TotalAccept	44.45		TotalAccept			TotalAccept	45.00	
edVolume	11.629		edVolume	83		edVolume	15.868		edVolume	11.172		edVolume	268		edVolume	15.400	
Congestion			Congestion			Congestion			Congestion	F0 7F7 20		Congestion	44502-88		Congestion	76 440 77	
revenue	21.524,64		revenue	15.268,32			27.696,60		revenue	58.757,32			14.592,29			76.148,77	
Social			Social						Social						Social		
Welfare	36.982,00		Welfare	42.344,00		Welfare	47.097,00		Welfare	97.519,00		Welfare	111.767,00		Welfare	126.877,00	

5. LTCC Implementation

KPI1: MaxMin Core NP


KY OF WE OF OF THE WAS AN AN ON TO


5. LTCC Implementation

KPI2 Comparison of the KPI2 for LTCC domains after minRAM, 1240, after splitting

KPI2 (comparison): Max BEX per BZ-BZ

LTFBA project update – Simulation results

2nd Round: simulations 2022 for 20, 30, 40% MinRAM – list of all limiting elements

20%MinRAM

	criticalBranch_id	monitoredBranch_name	RAM	RAM0Core	fMax	amr	ShadowPrice	AwardedCapacity	conti_name
0	D2_CBCO_00134_S11	[D2-D2] Altheim - Simbach 234/230 [DIR]	64	77	398	3	9,751414094	64	N-1 St. Peter - Pleinting 258
15	NL_CBCO_00366_S04	[NL-D2] Meeden-Diele 380 Z [OPP] [NL]	169	-39	1053	250	30,36747304	169	N-1 Diele - Meeden WEISS/W
19	AT_CBCO_00383_S06	[AT-HU] Wien Suedost - Gyoer 245 [DIR] [AT]	38	22	234	25	115,6283327	38	N-1 Gyor - Neusiedl
28	D7_CBCO_02406_S06	[FR-D7] Vigy - Ensdorf VIGY2 S [DIR] [D7]	302	-47	1884	424	18,32046037	302	N-1 Ensdorf - Vigy VIGY1 N
38	RO_CBCO_00268_S06	[RO-RO] PST Arad 400/220 3 [DIR]	64	70	400	9	5,710934903	64	N-1 Mintia - Arad
51	FR_CBCO_00039_S01	[BE-FR] Avelgem - Avelin 80 [DIR] [FR]	354	442	1801	0	91,63682213	354	N-1 Avelgem - Mastaing 380.79
67	AT_CBCO_00415_S07	[AT-SI] Obersielach - Podlog 247 [DIR] [AT]	58	-28	359	100	17,13143803	58	N-1 Cirkovce-Podlog
85	AT_CBCO_00900_S09	[AT-CZ] Duernrohr 1 - Slavetice 437 [OPP] [AT]	290	363	1559	0	8,715308233	290	N-1 Slavetice - Durnrohr 2
100	NL_CBCO_00037_S09	[NL-BE] Rilland-Zandvliet 380 G [DIR] [NL]	277	50	1732	296	41,09612016	277	N-1 Van Eyck - Maasbracht 380 Black/27
101	NL_CBCO_00038_S09	[NL-BE] Rilland-Zandvliet 380 G [DIR] [NL]	277	97	1732	249	6,065932249	277	N-1 Van Eyck - Maasbracht 380 White/28
104	RO_CBCO_00262_S09	[RO-RO] TR Portile de Fier 400/220 2 [OPP]	80	-48	500	148	4,205549404	80	N-1 TR Portile de Fier 400/220 3

30%MinRAM

	criticalBranch_id	monitoredBranch_name	RAM	RAM0Core	fMax	amr	ShadowPrice	AwardedCapacity	conti_name
6	NL_CBCO_00366_S04	[NL-D2] Meeden-Diele 380 Z [OPP] [NL]	253	-39	1053	355	26,54208842	253	N-1 Diele - Meeden WEISS/W
37	FR_CBCO_00039_S01	[BE-FR] Avelgem - Avelin 80 [DIR] [FR]	432	442	1801	98	92,30374908	432	N-1 Avelgem - Mastaing 380.79
39	AT_CBCO_00415_S07	[AT-SI] Obersielach - Podlog 247 [DIR] [AT]	86	-28	359	136	17,00243346	86	N-1 Cirkovce-Podlog
40	AT_CBCO_00481_S07	[AT-D2] St. Peter 2 - Pleinting 258 [OPP] [AT]	168	210	526	0	13,19338956	168	N-1 Pleinting - Pirach 257
44	HU_CBCO_00360_S07	[HU-HU] Gonyu - Gyor [DIR]	335	419	1385	0	3,991703228	335	N-1 Gabcikovo - Gyor
61	AT_CBCO_00383_S06	[AT-HU] Wien Suedost - Gyoer 245 [DIR] [AT]	56	22	234	48	97,64177964	56	N-1 Gyor - Neusiedl
70	BE_CBCO_01693_S06	[NL-BE] Maasbracht - Van Eyck 380 White/28 [OPP] [BE]	355	444	1385	0	3,608368894	355	N-1 PST Van Eyck 1
74	D7_CBCO_02406_S06	[FR-D7] Vigy - Ensdorf VIGY2 S [DIR] [D7]	452	-47	1884	612	12,79192155	452	N-1 Ensdorf - Vigy VIGY1 N
85	RO_CBCO_00271_S06	[RO-RO] PST Arad 400/220 3 [DIR]	96	105	400	15	2,359053471	96	N-1 Portile de Fier - Djerdap
98	AT_CBCO_00900_S09	[AT-CZ] Duernrohr 1 - Slavetice 437 [OPP] [AT]	374	363	1559	105	4,759042284	374	N-1 Slavetice - Durnrohr 2
116	NL_CBCO_00037_S09	[NL-BE] Rilland-Zandvliet 380 G [DIR] [NL]	416	50	1732	470	14,45349448	416	N-1 Van Eyck - Maasbracht 380 Black/27
120	RO_CBCO_00262_S09	[RO-RO] TR Portile de Fier 400/220 2 [OPP]	120	-48	500	198	3,254462128	120	N-1 TR Portile de Fier 400/220 3

40%MinRAM

criticalBranch id	monitoredBranch name	DAM	PAMOCoro	fMay	amr	ShadowBrico	AwardedCapacity	conti name
_	_	KAIVI	KAIVIOCOTE	IIVIAA	allii	Silauowriice	AwardedCapacity	conti_name
4 NL_CBCO_00366_S0	[NL-D2] Meeden-Diele 380 Z [OPP] [NL]	337	-39	1053	460	17,09304715	337	N-1 Diele - Meeden WEISS/W
23 FR_CBCO_00039_S0:	[BE-FR] Avelgem - Avelin 80 [DIR] [FR]	576	442	1801	278	83,7778491	576	N-1 Avelgem - Mastaing 380.79
24 AT_CBCO_00381_S1	[AT-HU] Wien Suedost - Gyoer 245 [DIR] [AT]	75	90	234	4	93,36630055	75	N-1 Neusiedl - Wien Suedost 246A
49 BE_CBCO_01693_S0	[NL-BE] Maasbracht - Van Eyck 380 White/28 [OPP] [BE]	443	444	1385	110	6,567086684	443	N-1 PST Van Eyck 1
52 CZ_CBCO_00005_S06	[CZ-CZ] TR Sokolnice 220/400 [DIR]	160	198	500	2	1,170336968	160	N-1 Slavetice - Durnrohr 2
55 FR_CBCO_00040_S06	[BE-FR] Avelgem - Avelin 80 [OPP] [FR]	609	761	1609	0	10,92463067	609	N-1 Avelgem - Mastaing 380.79
66 RO_CBCO_00271_S0	[RO-RO] PST Arad 400/220 3 [DIR]	128	105	400	55	1,642073394	128	N-1 Portile de Fier - Djerdap
84 AT_CBCO_00415_S0	[AT-SI] Obersielach - Podlog 247 [DIR] [AT]	115	-28	359	172	20,93133121	115	N-1 Cirkovce-Podlog
85 AT_CBCO_00481_S0	[AT-D2] St. Peter 2 - Pleinting 258 [OPP] [AT]	168	210	526	0	25,13285257	168	N-1 Pleinting - Pirach 257
89 HU_CBCO_00360_S0	[HU-HU] Gonyu - Gyor [DIR]	443	419	1385	135	1,149731912	443	N-1 Gabcikovo - Gyor
131 NL CBCO 00037 SO	[NL-BE] Rilland-Zandvliet 380 G [DIR] [NL]	554	50	1732	643	7,62676987	554	N-1 Van Eyck - Maasbracht 380 Black/2

LTFBA project update – Simulation results

2nd Round: simulations 2023 for 20, 30, 40% MinRAM – list of all limiting elements

20%MinRAM

	criticalBranch_id	monitoredBranch_name	RAM	RAM0Core	fMax	amr	ShadowPrice	AwardedCapacity	conti_name
0	D2_CBCO_00134_S11	[D2-D2] Altheim - Simbach 234/230 [DIR]	64	77	398	3	139,410185	64	N-1 St. Peter - Pleinting 258
15	NL_CBCO_00366_S04	[NL-D2] Meeden-Diele 380 Z [OPP] [NL]	169	-39	1053	250	73,87737051	169	N-1 Diele - Meeden WEISS/W
19	AT_CBCO_00383_S06	[AT-HU] Wien Suedost - Gyoer 245 [DIR] [AT]	38	22	234	25	156,6659409	38	N-1 Gyor - Neusiedl
28	D7_CBCO_02406_S06	[FR-D7] Vigy - Ensdorf VIGY2 S [DIR] [D7]	302	-47	1884	424	28,96632569	302	N-1 Ensdorf - Vigy VIGY1 N
38	RO_CBCO_00268_S06	[RO-RO] PST Arad 400/220 3 [DIR]	64	70	400	9	10,70379387	64	N-1 Mintia - Arad
51	FR_CBCO_00039_S01	[BE-FR] Avelgem - Avelin 80 [DIR] [FR]	354	442	1801	0	283,921367	354	N-1 Avelgem - Mastaing 380.79
67	AT_CBCO_00415_S07	[AT-SI] Obersielach - Podlog 247 [DIR] [AT]	58	-28	359	100	43,13070468	58	N-1 Cirkovce-Podlog
76	HR_CBCO_00019_S08	[HR-SI] 220kV Pehlin - Divaca [DIR] [HR]	60	-36	374	111	29,90087849	60	N-1 Melina - Divaca
85	AT_CBCO_00900_S09	[AT-CZ] Duernrohr 1 - Slavetice 437 [OPP] [AT]	290	363	1559	0	15,95448279	290	N-1 Slavetice - Durnrohr 2
100	NL_CBCO_00037_S09	[NL-BE] Rilland-Zandvliet 380 G [DIR] [NL]	277	50	1732	296	80,30560013	277	N-1 Van Eyck - Maasbracht 380 Black/27
104	RO_CBCO_00262_S09	[RO-RO] TR Portile de Fier 400/220 2 [OPP]	80	-48	500	148	20,27292823	80	N-1 TR Portile de Fier 400/220 3

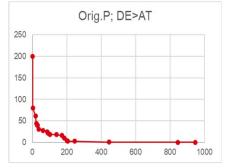
30%MinRAM

	criticalBranch_id	monitoredBranch_name	RAM	RAM0Core	fMax	amr	ShadowPrice	AwardedCapacity	conti_name
6	NL_CBCO_00366_S04	[NL-D2] Meeden-Diele 380 Z [OPP] [NL]	253	-39	1053	355	55,96163579	253	N-1 Diele - Meeden WEISS/W
37	FR_CBCO_00039_S01	[BE-FR] Avelgem - Avelin 80 [DIR] [FR]	432	442	1801	98	274,4677853	432	N-1 Avelgem - Mastaing 380.79
39	AT_CBCO_00415_S07	[AT-SI] Obersielach - Podlog 247 [DIR] [AT]	86	-28	359	136	41,78559865	86	N-1 Cirkovce-Podlog
40	AT_CBCO_00481_S07	[AT-D2] St. Peter 2 - Pleinting 258 [OPP] [AT]	168	210	526	0	70,44583485	168	N-1 Pleinting - Pirach 257
44	HU_CBCO_00360_S07	[HU-HU] Gonyu - Gyor [DIR]	335	419	1385	0	3,249822828	335	N-1 Gabcikovo - Gyor
51	HR_CBCO_00019_S08	[HR-SI] 220kV Pehlin - Divaca [DIR] [HR]	90	-36	374	148	6,945801322	90	N-1 Melina - Divaca
61	AT_CBCO_00383_S06	[AT-HU] Wien Suedost - Gyoer 245 [DIR] [AT]	56	22	234	48	139,8827091	56	N-1 Gyor - Neusiedl
70	BE_CBCO_01693_S06	[NL-BE] Maasbracht - Van Eyck 380 White/28 [OPP] [BE]	355	444	1385	0	18,6412212	355	N-1 PST Van Eyck 1
74	D7_CBCO_02406_S06	[FR-D7] Vigy - Ensdorf VIGY2 S [DIR] [D7]	452	-47	1884	612	12,10367323	452	N-1 Ensdorf - Vigy VIGY1 N
78	HU_CBCO_00621_S06	[HU-UA] Kisvarda - Mukachevo [DIR] [HU]	97	121	249	0	3,362342764	97	N-1 Szabolcsbaka - Mukachevo
85	RO_CBCO_00271_S06	[RO-RO] PST Arad 400/220 3 [DIR]	96	105	400	15	4,246934585	96	N-1 Portile de Fier - Djerdap
98	AT_CBCO_00900_S09	[AT-CZ] Duernrohr 1 - Slavetice 437 [OPP] [AT]	374	363	1559	105	12,3955708	374	N-1 Slavetice - Durnrohr 2
99	BE_CBCO_01737_S09	[NL-BE] Maasbracht - Van Eyck 380 White/28 [DIR] [BE]	352	440	1468	0	0,349271998	352	N-1 Rilland - Zandvliet 380 Grey/29
116	NL_CBCO_00037_S09	[NL-BE] Rilland-Zandvliet 380 G [DIR] [NL]	416	50	1732	470	47,94266211	416	N-1 Van Eyck - Maasbracht 380 Black/27
120	RO CBCO 00262 S09	[RO-RO] TR Portile de Fier 400/220 2 [OPP]	120	-48	500	198	15,09106523	120	N-1 TR Portile de Fier 400/220 3

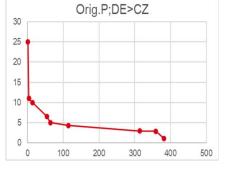
40%MinRAM

	criticalBranch_id	monitoredBranch_name	RAM	RAM0Core	fMax	amr	ShadowPrice	AwardedCapacity	conti_name
4	NL_CBCO_00366_S04	[NL-D2] Meeden-Diele 380 Z [OPP] [NL]	337	-39	1053	460	35,05690589	337	N-1 Diele - Meeden WEISS/W
23	FR_CBCO_00039_S01	[BE-FR] Avelgem - Avelin 80 [DIR] [FR]	576	442	1801	278	248,5445039	576	N-1 Avelgem - Mastaing 380.79
24	AT_CBCO_00381_S10	[AT-HU] Wien Suedost - Gyoer 245 [DIR] [AT]	75	90	234	4	134,7604049	75	N-1 Neusiedl - Wien Suedost 246A
49	BE_CBCO_01693_S06	[NL-BE] Maasbracht - Van Eyck 380 White/28 [OPP] [BE]	443	444	1385	110	14,08022091	443	N-1 PST Van Eyck 1
52	CZ_CBCO_00005_S06	[CZ-CZ] TR Sokolnice 220/400 [DIR]	160	198	500	2	6,369094481	160	N-1 Slavetice - Durnrohr 2
55	FR_CBCO_00040_S06	[BE-FR] Avelgem - Avelin 80 [OPP] [FR]	609	761	1609	0	15,60596577	609	N-1 Avelgem - Mastaing 380.79
58	HU_CBCO_00621_S06	[HU-UA] Kisvarda - Mukachevo [DIR] [HU]	97	121	249	0	9,754404262	97	N-1 Szabolcsbaka - Mukachevo
66	RO_CBCO_00271_S06	[RO-RO] PST Arad 400/220 3 [DIR]	128	105	400	55	0,029040281	128	N-1 Portile de Fier - Djerdap
84	AT_CBCO_00415_S07	[AT-SI] Obersielach - Podlog 247 [DIR] [AT]	115	-28	359	172	44,13807334	115	N-1 Cirkovce-Podlog
85	AT_CBCO_00481_S07	[AT-D2] St. Peter 2 - Pleinting 258 [OPP] [AT]	168	210	526	0	97,36560884	168	N-1 Pleinting - Pirach 257
89	HU_CBCO_00360_S07	[HU-HU] Gonyu - Gyor [DIR]	443	419	1385	135	1,742051349	443	N-1 Gabcikovo - Gyor
96	HR_CBCO_00019_S08	[HR-SI] 220kV Pehlin - Divaca [DIR] [HR]	120	-36	374	186	3,848633455	120	N-1 Melina - Divaca
131	NL_CBCO_00037_S09	[NL-BE] Rilland-Zandvliet 380 G [DIR] [NL]	554	50	1732	643	30,29500075	554	N-1 Van Eyck - Maasbracht 380 Black/27
135	RO CBCO 00262 S09	[RO-RO] TR Portile de Fier 400/220 2 [OPP]	160	-48	500	248	7,975219384	160	N-1 TR Portile de Fier 400/220 3

LTFBA project update


Example of bids on 2 BZ-borders for 'Normalization 1' by averaging price per BZB to '1' (current understanding)

		Original bio	ds	
Bid Nr.	Border	Amount	Price	A*P
1	DE>AT	15	4	60
2	DE>AT	5	3.22	16.1
3	DE>AT	40	2.8	112
4	DE>AT	200	0.82	164
5	DE>AT	100	0.45	45
6	DE>AT	3	40	120
7	DE>AT	25	25	625
8	DE>AT	25	28	700
9	DE>AT	30	16.5	495
10	DE>AT	5	44	220
11	DE>AT	10	19	190
12	DE>AT	5	40.5	202.5
13	DE>AT	15	62	930
14	DE>AT	400	0.5	200
15	DE>AT	6	31	186
16	DE>AT	4	22	88
17	DE>AT	2	80	160
18	DE>AT	1	200	200
19	DE>AT	40	18.5	740
20	DE>AT	15	10	150
Total		946	648.29	5603.6
average		47.3	32.4145	280.18
Bid Nr.	Border	Amount	Price	A*P
22	DE>CZ	200	2.9	580
23	DE>CZ	40	6.55	262
23	DE>CZ	45	2.85	128.25
25	DE>CZ	3	11	33
26	DE>CZ	50	4.3	215
27	DE>CZ	1	4.3 25	25
28	DE>CZ	22	1.05	23.1
29	DE>CZ	10	1.05	100
30	DE>CZ	10	5	50
	DE>UZ	381	68.65	1416.35
Total		42.33	7.63	157.37
average		42.33	1.03	101.31


There is no valid bid 21 in this example

		DE>AT	
Bid Nr.	Amount	Orig.P	norm.P
18	1	200	6.170
17	2	80	2.468
13	15	62	1.913
10	5	44	1.357
12	5	40.5	1.249
6	3	40	1.234
15	6	31	0.956
8	25	28	0.864
7	25	25	0.771
16	4	22	0.679
11	10	19	0.586
19	40	18.5	0.571
9	30	16.5	0.509
20	15	10	0.309
1	15	4	0.123
2	5	3.22	0.099
3	40	2.8	0.086
4	200	0.82	0.025
14	400	0.5	0.015
5	100	0.45	0.014
			20.000
		Avg. Price	1.000

		DE>CZ	
Bid Nr.	Amount	Orig.P	norm.P
27	1.000	25.00	3.277
25	3.000	11.00	1.442
29	10.000	10.00	1.311
23	40.000	6.55	0.859
30	10.000	5.00	0.655
26	50.000	4.30	0.564
22	200.000	2.90	0.380
24	45.000	2.85	0.374
28	22.000	1.05	0.138
			9.000
		Avg. Price	1.000

Calculation: Divide each original price by the average price calculated from all prices (32,4145 for DE>AT in this example)

Core SG | Bratislava | 14-15/12/2023 21

LTFBA project update

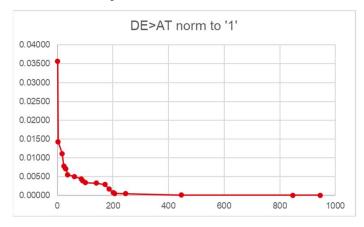
Example of bids on 2 BZ-borders for 'Weighted Normalization' by averaging prices by total value of

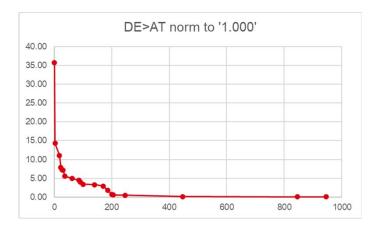
Avg. Price = 1

bids per bid to '1'

	(Original b	ids		Avg. by total valu	e per bid to '1'			DE>AT		De tetelorium DE AT C III I D
Bid Nr.	Border	Amount	Price	A*P	new Price	N_A*P/bid				norm. Price	norm. By total value; DE>AT Sum all bid Prices =
1	DE>AT	15	4	60	0.00071	0.011	Bid Nr.	Amount	Orig.P	by total	0.04000
2	DE>AT	5	3.22	16.1	0.00057	0.003	40		000	value	- 0.00500
3	DE>AT	40	2.8	112	0.00050	0.020	18 17	2	200 80	0.0357 0.0143	0.03500
4	DE>AT	200	0.82	164	0.00015	0.029	13	15	62	0.0143	0.03000
5	DE>AT	100	0.45	45	0.00008	0.008	10	5	44	0.0079	Area under Bid-Curve = 1
6	DE>AT	3	40	120	0.00714	0.021	12	5	40.5	0.0072	0.02500
7	DE>AT	25	25	625	0.00446	0.112	6	3	40	0.0071	Same total area for all BZBs
8	DE>AT	25	28	700	0.00500	0.125	15	6	31	0.0055	0.01500
9	DE>AT	30	16.5	495	0.00294	0.088	8	25	28	0.0050	0.01500
10	DE>AT	5	44	220	0.00785	0.039	7	25	25	0.0045	0.01000
11	DE>AT	10	19	190	0.00339	0.034	16	4	22	0.0039 0.0034	0.00500
12	DE>AT	5	40.5	202.5	0.00723	0.036	11 19	10 40	19 18.5	0.0034	0.00500
13	DE>AT	15	62	930	0.01106	0.166	9	30	16.5	0.0033	0.00000
14	DE>AT	400	0.5	200	0.00009	0.036	20	15	10	0.0018	0 200 400 600 800 1000
15	DE>AT	6	31	186	0.00553	0.033	1	15	4	0.0007	
16	DE>AT	4	22	88	0.00393	0.016	2	5	3.22	0.0006	<u> </u>
17	DE>AT	2	80	160	0.01428	0.029	3	40	2.8	0.0005	
18	DE>AT	1	200	200	0.03569	0.036	4	200	0.82	0.0001	norm. By total value; DE>CZ
19	DE>AT	40	18.5	740	0.00330	0.132	14	400	0.5	0.0001	AND REPORT OF THE REPORT OF THE PROPERTY OF TH
20	DE>AT	15	10	150	0.00178	0.027	5	100 946	0.45	0.0001	0.04000
Total		946		5603.6		1.000		340			0.03500
									DE>CZ		
										norm. Price	0.03000
Bid Nr.		Amount	Price	A*P	new Price	N_A*P/bid	Bid Nr.	Amount	Orig.P	by total	o.o2500 Area under Bid-Curve = 1
22	DE>CZ	200	2.9	580	0.0020	0.410				value	Area under Bid-Curve = 1
23	DE>CZ	40	6.55	262	0.0046	0.185	27	1	25	0.01765	0.02000
24	DE>CZ	45	2.85	128.25	0.0020	0.091	25	3	11	0.00777	Same total area for all BZBs,
25	DE>CZ	3	11	33	0.0078	0.023	29 23	10 40	10 6.55	0.00706 0.00462	0.01000
26	DE>CZ	50	4.3	215	0.0030	0.152	30	10	5	0.00462	o.01000 independent of shape of bid curve!
27	DE>CZ	1	25	25	0.0177	0.018	26	50	4.3	0.00304	1
28	DE>CZ	22	1.05	23.1	0.0007	0.016	22	200	2.9	0.00205	0.00500
29	DE>CZ	10	10	100	0.0071	0.071	24	45	2.85	0.00201	0.00000
30	DE>CZ	10	5	50	0.0035	0.035	28	22	1.05	0.00074	0 200 400 600 800 1000
Total		381		1416.35		1.000		381			

Calculation: Divide each original price by the sum over all bids for price times amount per bid (5603,6 for DE>AT in this example) for normalization to '1' (normalization e.g. to 'higher values' is also possible to have more realistic prices).

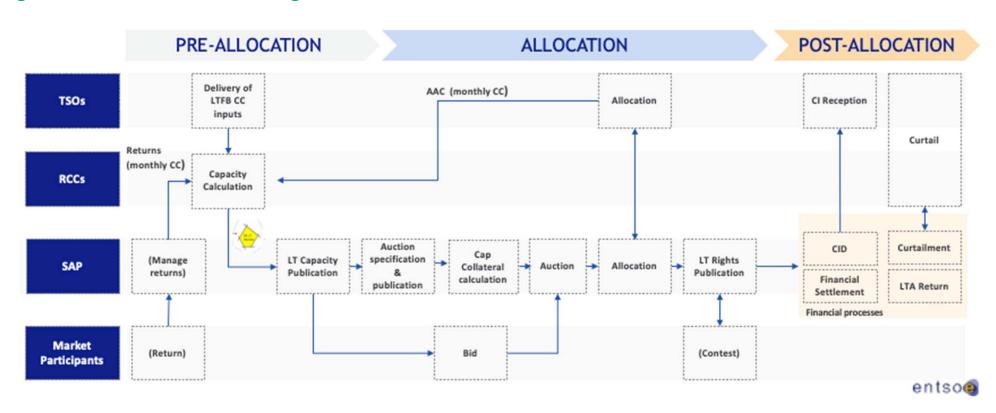

Core SG | Bratislava | 14-15/12/2023 22


LTFBA project update

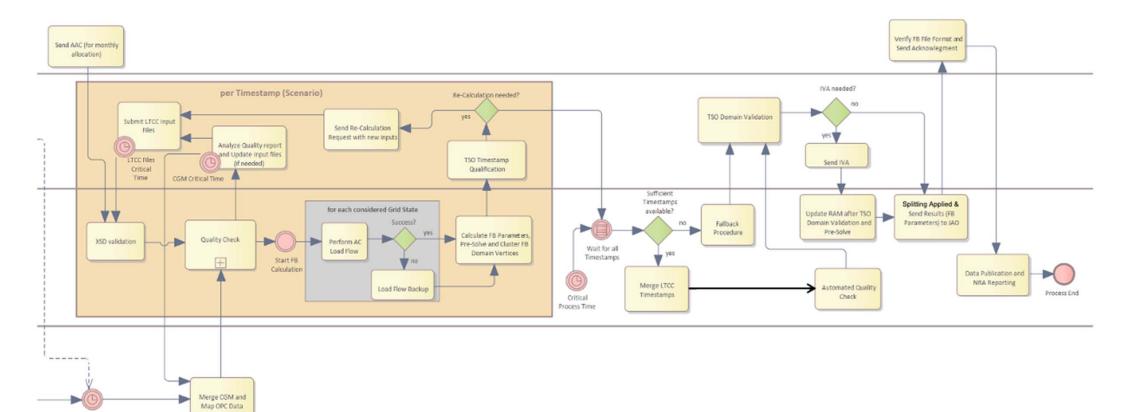
Normalization to higher total value than '1' to get more realistic prices

Sum Amount	DE>AT norm
	to '1'
1	0.03569
3	0.01428
18	0.01106
23	0.00785
28	0.00723
31	0.00714
37	0.00553
62	0.00500
87	0.00446
91	0.00393
101	0.00339
141	0.00330
171	0.00294
186	0.00178
201	0.00071
206	0.00057
246	0.00050
446	0.00015
846	0.00009
946	0.00008

Sum Amount	DE>AT norm
	to '1.000'
1	35.691
3	14.277
18	11.064
23	7.852
28	7.227
31	7.138
37	5.532
62	4.997
87	4.461
91	3.926
101	3.391
141	3.301
171	2.945
186	1.785
201	0.714
206	0.575
246	0.500
446	0.146
846	0.089
946	0.080



Core SG | Bratislava | 14-15/12/2023 23

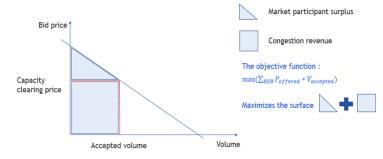

Other annexes

High Level Presentation of Long-Term Flow Based Allocation Process

5. LTCC Implementation

Explanation of Core LTCC Process

Annex 2 – Simulation results - Additional assessment with Polish bids


LTFBA project update - Simulation results -

Reminder: Currently 20% MinRAM is required by the Core LTCCM. Increasing the MinRAM to a higher value would need to be agreed upon by all Core TSOs and there is currently no consensus on this point.

Overview of simulations for 2023 with Polish bids (11 TS) & 2023 without PL bids (11 TS) and comparison with historical NTC

	Formulation	Yearly Auction 2023 (NTC)	FB Auction w PL Bids 23 – MinRAM 20%	NTC vs FB	FB Auction w PL Bids 23 – MinRAM 30%	NTC vs FB	FB Auction w PL Bids 23 – MinRAM 40%	NTC vs FB	•	FB Auction Bids 23 – MinRAM 20%		FB Auction Bids 23 – MinRAM 30%	NTC vs FB	FB Auction Bids 23 – MinRAM 40%	NTC vs FB
Allocated capacity (MW)	Sum Allocated Capacity per BZB	18,139	8,966	-50,5%	12,257	-32,4%	14,549	-19,7%	18,139	8,510	-53,0%	11,816	-34,8%	14,141	-22,05%
Congestion Revenue (EUR/MTU)	Sum Allocated Capacity * Clearing Price	202,904	170,173	-16,1%	197,416	-2,7%	224,195	+10,5%	202,904	170,091	-16,2%	197,040	-2,9%	223,519	+10,15%
Total welfare (EUR/MTU)	Objective function optimize the (accepted volume)*(Bid price).	273,888	222,995	-18,5%	272,533	-0,5%	325,336	+18,7%	273,888	221,830	-18,9%	271,106	-1,0%	323,911	+18,25%
Market participants 'Surplus (EUR/MTU)	Revenue	70,984	52,822	-25,4%	75,117	+5,8%	101,141	+42,5%	70,984	51,739	-27,1%	74,066	+4,3%	100,391	+41,5%

- Yearly historical bids are not available for Polish borders because PSE was not able to offer Y capacities due to the lack of coordination in capacity calculation process.
- Therefore, July 2022 import and December 2023 export monthly bids submitted for PL Core borders were extrapolated to fit Yearly bids and used for additional simulation round to be shown as an extended information.

LTFBA project update - Simulation results -

Overview of simulations for 2023 with Polish bids (12 TS) & 2023 without PL bids (12 TS) and comparison with historical NTC

Y2023	(11TS) PL Bids 20	minRAM
Oriented	TotalAccepted	TotalAccepted
BZB FB	Volume FB	Volume NTC
AT_to_CZ	5	200
AT_to_DE	0	1960
AT_to_HU	100	250
AT_to_SI	48	300
BE_to_DE	20	260
BE_to_FR	313	250
BE_to_NL	30	473
CZ_to_AT	128	200
CZ_to_DE	423	599
CZ_to_PL	0	0
CZ_to_SK	389	600
DE_to_AT	535	1960
DE_to_BE	215	260
DE_to_CZ	31	300
DE_to_FR	1388	600
DE_to_NL	214	827
DE_to_PL	0	0
FR_to_BE	150	1450
FR_to_DE	1364	1000
HR_to_HU	57	400
HR_to_SI	10	500
HU_to_AT	25	250
HU_to_HR	302	500
HU_to_RO	337	350
HU_to_SI	2	150
HU_to_SK	904	800
NL_to_BE	10	473
NL_to_DE	0	827
PL_to_CZ	177	0
PL_to_DE	123	0
PL_to_SK	166	0
RO_to_HU	293	350
SI_to_AT	106	300
SI_to_HR	575	500
SI_to_HU	18	150
SK_to_CZ	135	400
SK_to_HU	288	699
SK_to_PL	78	0
SUM	8959	18138

J_U W	itii i Olio	ii bida (
Y2023	(11TS) PL Bids 3	0 minRAM
Oriented	TotalAccepted	TotalAccepted
BZB FB	Volume FB	Volume NTC
AT_to_CZ	5	200
AT_to_DE	0	1960
AT_to_HU	179	250
AT_to_SI	134	300
BE_to_DE	25	260
BE_to_FR	327	250
BE_to_NL	30	473
CZ_to_AT	131	200
CZ_to_DE	632	599
CZ_to_PL	0	0
CZ_to_SK	462	600
DE_to_AT	786	1960
DE_to_BE	208	260
DE_to_CZ	55	300
DE_to_FR	1734	600
DE_to_NL	430	827
DE_to_PL	0	0
FR_to_BE	448	1450
FR_to_DE	1966	1000
HR_to_HU	140	400
HR_to_SI	22	500
HU_to_AT	25	250
HU_to_HR	343	500
HU_to_RO	522	350
HU_to_SI	2	150
HU_to_SK	1267	800
NL_to_BE	65	473
NL_to_DE	79	827
PL_to_CZ	195	0
PL_to_DE	122	0
PL_to_SK	265	0
RO_to_HU	457	350
SI_to_AT	87	300
SI_to_HR	690	500
SI_to_HU	38	150
SK_to_CZ	29	400
SK_to_HU	288	699
SK_to_PL	63	0
SUM	12251	18138

Y2023 (11TS) PL Bids 40 minRAM				
Oriented	TotalAccepted	TotalAccepted		
BZB FB	Volume FB	Volume NTC		
AT_to_CZ	36	200		
AT_to_DE	41	1960		
AT_to_HU	218	250		
AT_to_SI	181	300		
BE_to_DE	110	260		
BE_to_FR	458	250		
BE_to_NL	100	473		
CZ_to_AT	213	200		
CZ_to_DE	1210	599		
CZ_to_PL	0	0		
CZ_to_SK	430	600		
DE_to_AT	725	1960		
DE_to_BE	325	260		
DE_to_CZ	71	300		
DE_to_FR	2130	600		
DE_to_NL	648	827		
DE_to_PL	0	0		
FR_to_BE	306	1450		
FR_to_DE	2033	1000		
HR_to_HU	168	400		
HR_to_SI	27	500		
HU_to_AT	25	250		
HU_to_HR	400	500		
HU_to_RO	746	350		
HU_to_SI	3	150		
HU_to_SK	937	800		
NL_to_BE	138	473		
NL_to_DE	315	827		
PL_to_CZ	243	0		
PL_to_DE	192	0		
PL_to_SK	226	0		
RO_to_HU	628	350		
SI_to_AT	69	300		
SI_to_HR	605	500		
SI_to_HU	34	150		
SK_to_CZ	159	400		
SK_to_HU	325	699		
SK_to_PL	67	0		
CLINA	14542	10120		

In the DE_to_PL, SK_to_PL and CZ_to_PL oriented BZB, none of the bids were accepted by the allocation algorithm

> Borders with <100MW allocated Borders with FB values >> Historical ATC allocations

Annex 3

Conceptual challenges – Market participants' concerns

The following concerns were received by Market Participants*

- a) Objective of FCA is to provide hedging opportunities for all market participants
 - a) 'Economic efficiency' does not necessarily mean 'social welfare' (see FCA Art. 10.5) while not deteriorating long term visibility for the TSOs (operational security).
- b) Flow-based allocation is not appropriate for forward markets
 - a) Flow-Based works in Day-Ahead. Forward markets work differently.
- c) Implementing a FB methodology on the LT timeframe assumes that the global aim of LTTRs is to provide maximum social welfare, leading to higher allocated volumes on the borders with the highest spreads.
 - a) This implicitly leads to very low (or close to 0) volumes on some other BZ borders.
 - b) Market Participants have proposed several alternatives:
 - a) To assess having minimum volumes at each border
 - b) To use forward market spread between two borders as input data to consider the market risk premium
 - c) To use ex-post DA price spreads as input data to consider the market risk premium
- d) Gathering all bids in a single auction leads to important negative consequences on the collaterals to be provided.

^{*}Market Participants views & different concerns do not necessarily correctly reflect the positions from all TSOs

Conceptual challenges – EMDR impact

Discussions on forward market models and the upcoming FCA 2.0 could introduce several changes

Uncertain market design

- The EMDR latest wording proposes an assessment of possible improvements of the forward market design;
- It is foreseen that FCA 2.0 would include these improvements;
- While some are more "evolutionary" (e.g. multiple release of yearly capacities, longer maturities such as Y+2 and Y+3), some others are more "revolutionary" (e.g. Virtual Hubs);

Assessment of long-term flow-based allocation

6th ACER - ENTSO-E workshop on electricity long term flow-based allocation 22 March 2024

Indicative time	Webinar items
08:50 - 09:00	Webinar open for log-in
09:00 - 09:10	Introductory Remarks Zoran VUJASINOVIC, ACER
09:10 - 09:20	Long-term flow-based allocation: implementation - timeline and basic info Jim VILSSON, ENTSO-E
09:20 - 09:50	Long-term flow-based allocation: Simulation of results Cyriac DE VILLENFAGNE, ENTSO-E
09:50 - 10:10	ACER's views Martin POVH, ACER
10:10 - 10:35	Market participants' views Jerome LE PAGE, EFET
	Ways forward
10:35 - 10:45	Martin POVH, ACER
10:35 - 10:45 10:45 - 11:50	· •

Part 1 Assessment of simulation results

Decomposition of results

When analysing the results it's important to distinguish

- 1. Which effect comes from the volume of offered capacity
- 2. Which effect comes from the flow-based allocation (optimisation)

Only when the offered flow-based domain is of a similar size as NTC domain we can be sure that the results are a pure effect of the flow-based optimisation

The effect of offered capacities

Benchmarking the offered flow-based domain

- We do not have the information how offered flow-based domain compares with existing NTC domain
- This does not mean that flow-based domain must be equal or higher than NTC domain, but...
 - ... flow-based domain should not be significantly smaller
- ACER proposes to benchmark flow-based domain against existing NTC domain, and...
 - ... adjust flow-based domain where significantly smaller than NTC domain

Policy purpose of transmission rights

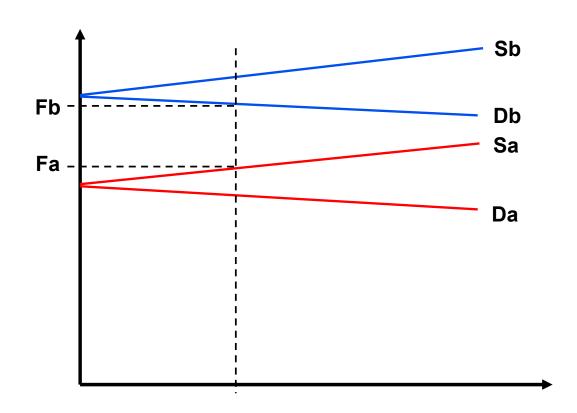
Purpose of transmission rights:

Article 9 Regulation 2019/943: "Transmission system operators shall issue long-term transmission rights..., ...unless an assessment of the forward market on the bidding zone borders performed by the competent regulatory authorities shows that there are sufficient hedging opportunities in the concerned bidding zones."

- Transmission rights are indirect mean to increase hedging opportunities within bidding zones. Cross-zonal
 price risks are a derivation/combination of price risks within zones.
- 2. Transmission rights are regulatory support to increase hedging opportunities for physical players (consumers, producers, suppliers)
- Hedging price risks within bidding zones for consumers and producers is buying and selling energy in forward timeframe
- Hedging opportunity is both accessibility (liquidity) and competitiveness (good price) of hedging products
- 5. Transmission rights should improve both

Policy purpose of transmission rights

Forward capacity allocation is also about optimising electricity flows in LT timeframe


- 1. For physical players hedging is mostly buying and selling forward
- 2. It is important at what price consumers/producers can buy/sell futures this determines their actual costs/revenues.
- 3. Optimising electricity flows in forward timeframe allows consumers to buy cheaper and producers to sell more expensive

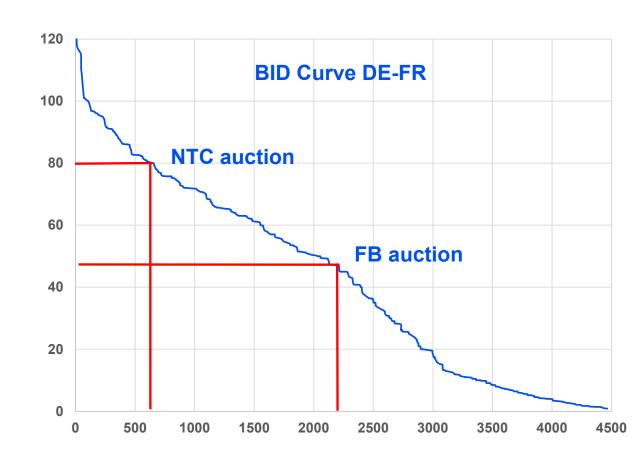
TRs bring forward prices together

Arbitrage between forward markets

- Each bidding zone has price increasing/decreasing supply/demand for futures – different expectations about spot price and risk premiums
- 2. Transmission rights enable to meet supply in cheaper markets with demand in more expensive markets
- 3. Efficient arbitrage implies that more TRs will bring forward markets closer together
- 4. More TRs leads to higher forward price convergence
- Infinite TRs would lead to full forward price convergence

Deeper look at the results

Competition between the borders


		BIDS 2023	NTC	2023	Flow-Based 2023		
From	То	Requested capacity / MW	Clearing price €/MWh	Allocated capacity / MW	Clearing price €/MWh	Allocated capacity / MW	
DE	FR	5,629	80.01	80.01 600		2,213	
DE	AT	17,433	18.44 1,960 3		30.00	249 👢	
DE	NL	10,982	8.99	827	7.55	1,297	
BE	FR	3,603	98.00 250		99.00	232	
DE	CZ	4,139	7.77	150	50 12.00		

Deeper look at the DE-FR border

Analysing DE – FR auction results

- Auction gate closure time: 23 Nov 2022,
 14:00
- Latest trade in DE (EEX futures baseload 2023): 350 €/MWh
- Latest trade in FR (EEX futures baseload 2023): 424.5 €/MWh
- Forward price spread DE-FR: 74.5 €/MWh
- LTTR NTC auction price: 80.01 €/MWh
- LTTR FB auction price: 46.7 €/MWh

Observations

Observations

Flow-based allocation (compared to NTC) would lead to better forward market price convergence:

- Efficient arbitrage: Forward spreads and LTTR prices must be in equilibrium deviations lead to arbitrage trades and back to equilibrium
- FB allocation reduced LTTR prices from 80 €/MWh to 46.7 €/MWh this does not mean LTTR undervaluation
- Efficient arbitrage implies forward spread will stabilise around that price (~ 46.7 €/MWh)
- This would happen mostly before the auction (based on forecast) and partly after the auction (to correct for forecast error)
- Assuming DE forward market has much more depth, most of the difference will result in lower price in FR forward market – French consumers/suppliers can buy futures ~33.3 €/MWh cheaper

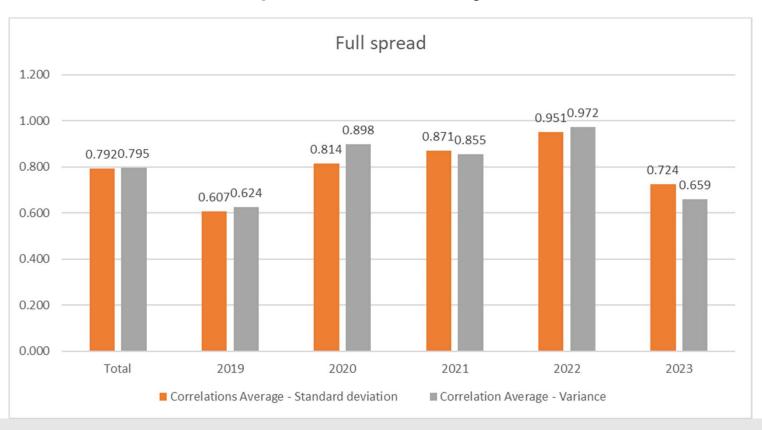
The volume of LTTRs affect prices or costs for those consumers/producers who want to buy/sell forward.

Observations

Observations

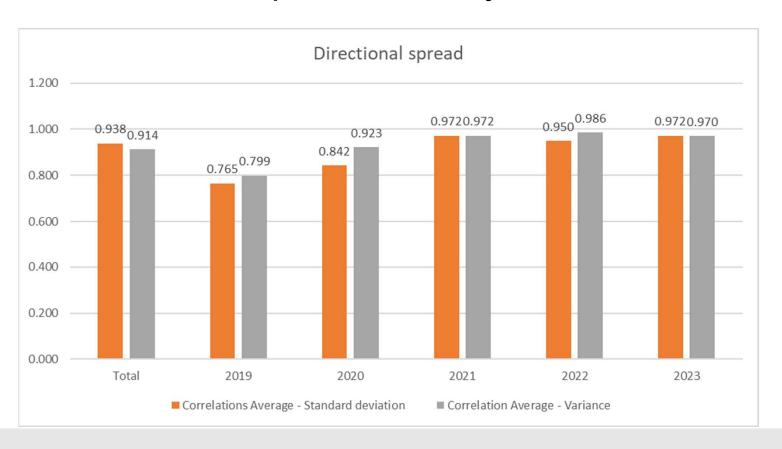
3. The overall impact on forward market integration is positive

- assuming equal level of capacity being offered
- forward markets on average closer together (increase of economic surplus)


4. The redistribution effects between borders depend on:

- Prices offered on specific borders
- The impact on specific borders on CNECs (i.e. PTDF)
- The location of most binding CNECs (and their shadow prices)

Spreads and volatility covary


Corelations between annual spreads and volatility across all Core borders 2019-2023

Spreads and volatility covary

Corelations between annual spreads and volatility across all Core borders 2019-2023

Part 2 Where we stand

History of the project

26.03.2016	FCA Regulation
21.02.2019	Core DA CCM approval
21.08.2019	Core LT CCM proposal deadline (as per FCA10: 6m after DA CCM)
29.08.2019	Core TSOs: informed Core NRAs on deadline breach
05.12.2019	agreed to provide LT experimentation, by 17.12.2019 (Core TSOs, NRAs, EC, ACER)
27.01.2020	Core TSOs provided interim experimentation report
11.02.2020	agreed to explore 3 alternatives, by 20.03.2020 (Core TSOs, NRAs, EC, ACER)
	- cNTC statistical approach
	- FB scenario-based approach
	- FB statistical approach
15.04.2020	Core TSOs: no agreement on the approach
	ACER: proposed FB scenario-based approach
25.05.2020	Core NRAs: supported FB scenario-based approach
02.09.2020	Core TSOs: agreed on FB scenario-based approach*
23.12.2020	Core TSOs submitted the proposal to Core NRAs (started 26.11)
29.04.2021	Core NRAs referred the proposal to ACER
03.11.2021	ACER's Decision 14/2021 on Core LT CCM
18.01.2022	ACER's Decision 03/2022 on Core LT CCM (upon PSE appeal)
11.2024	Implementation deadline

- 16 months delay in submitting the proposal
- FB scenario-based approach has been agreed by all parties
- Before that, the cNTC-based approach had been intensively discussed and analysed, without applicable outcome; finally abandoned
- FCA 10(5)(a) requirement has been proven by ACER: the flow-based approach leads to an increase of economic efficiency in the capacity calculation region with the same level of system security

^{*}ACER Decision 03/2022, recital (12): By email of 3 September 2020, the Core TSOs communicated that at their Steering Group meeting of 2 September 2020, they had agreed to focus on the targeted methodology for the implementation, i.e. with flow-based calculation and allocation, consequently to leave aside coordinated NTC extraction including the ideas of min-max bounds or variable minimum RAM calibrated on historical capacities that would have been included in the methodology, and to continue the discussion on the implementation timeline.

What have we learned from the past

Conclusions

- 1. Agreeing on coordinated NTCs in Core CCR was not possible
 - Difficult discussions on who should get more capacity and why
- 2. ACER proposed to go for statistical approach, but this was clearly rejected by majority of TSOs
- 3. Coordinated long-term capacity calculation is significantly delayed
 - The implementation would normally need to be done by Feb 2022 (6 months for approval and 2 years for implementation)

Ensuring that long-term transmission rights meet the market's hedging needs

ACER/ENTSO-E workshop – 22 March 2024

Indicative time	Webinar items
08:50 - 09:00	Webinar open for log-in
09:00 - 09:10	Introductory Remarks Zoran VUJASINOVIC, ACER
09:10 - 09:20	Long-term flow-based allocation: implementation - timeline and basic info Jim VILSSON, ENTSO-E
09:20 - 09:50	Long-term flow-based allocation: Simulation of results Cyriac DE VILLENFAGNE, ENTSO-E
09:50 - 10:10	ACER's views Martin POVH, ACER
10:10 - 10:35	Market participants' views Jerome LE PAGE, EFET
10:35 - 10:45	Ways forward Martin POVH, ACER
10:45 - 11:50	Discussion all
11:50 - 12:00	Closing Remarks Christophe GENCE-CREUX, ACER

1. Reminder of what we are collectively working on improving

What market participants look for when hedging on forward electricity markets (irrespective of LTTRs)

Why hedge?

- Forward hedging allows buyers and sellers to fix a price and volume of electricity
- It is vital to manage the fluctuation of prices and production of electricity in real time
- Hedging protects consumers and retail suppliers, usually a few months to 1>3 years before delivery
- Hedging protects producers and their asset investments, ideally many years before delivery

Market conditions necessary for easy and low-cost hedging:

Liquid

Where market participants are active on a continuous basis and in large numbers

→ you can easily find a counterparty to trade with, at the price you want

Deep

Where energy (and its derivative) is traded in sufficiently large volumes to absorb any new order

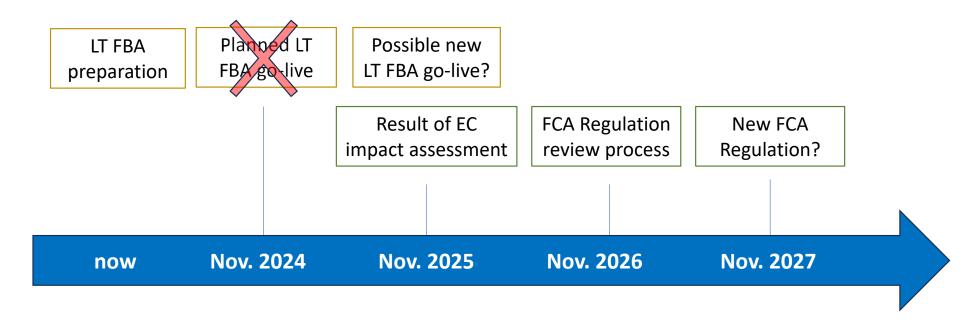

→ prices are predictable, volatility is only influenced by strong fundamentals (economy, demand /supply)

Longmaturity

Where trading happens years ahead of delivery

→ you can hedge a position for the period that you need

Why getting the allocation of LTTRs right is important



What the legislation provides for forward electricity markets as such & the allocation of LTTRs

	Regulation 2019/943 + FCA GL	2024 EMD reform			
Forward electricity markets	 No specific provisions Standard market rules for competition and transparency apply 	 Forward markets (as such) to allow effective hedging of price risks (whereas 20) Impact assessment by the EC (whereas 20) 			
Cross-zonal capacity calculation	 Mandates common coordinated capacity calculation between EU borders Coordinated NTC unless the economic efficiency of flow-based is greater 	 No change so far EC impact assessment to study (art. 9.4/5): multi-year capacity calculation options for zone-to-hub capacity calculation 			
LTTR allocation	 Fair, orderly, transparent and reliable allocation Allocation of LTTRs by all TSOs at all BZ borders unless alternative hedging XB hedging opportunities exist At least annual and monthly LTTR allocation Single allocation platform 	 No change so far EC impact assessment to study (art. 9.4/5): more frequent allocation of LTTRs multi-year LTTR allocation of LTTRs value-added of LTTR (FTR) obligations strengthening of secondary LTTR market options for zone-to-hub LTTR allocation 			

2. Current status and how to address market participants' concerns

Parallel processes for the future of forward markets and LTTR allocation

How to make the most of a new context?

(considering the postponement of LT FBA go-live and EC impact assessment)

Main concerns of market participants with flow-based allocation of LTTRs

Economic efficiency gain: FB auction surplus has been shown, but not the gain in economic efficiency – considering complexity and further externalities/reform

One single FB auction for all borders of a CCR

Fair access for all: borders compete between themselves for capacity / low or no capacity at some borders

Best use of capacity: very high collateral requirements reduce bidding capacity in simultaneous auction at all borders

Concern 1: is the flow-based auction of LTTRs really increasing economic efficiency, now and for the future?

Reminder: allocating LTTRs is not allocating flows (like in DA/ID); the choice to go for flow-based allocation was largely guided by difficulties in implementing coordinated NTC

This creates continuous doubt in the market as to the added value of LT FBA

ACER simulated in 2021 the auction surplus of LT FBA with min RAM vs. NTC (as is, without min RAM)

Objectives:

- analysing the benefits of a common coordinated calculation
- Analysing the benefits of a flowbased auction for LTTR allocation

- All things equal, it is logical that flow-based allocation creates auction surplus
- This does not indicate that it leads to a higher economic efficiency because of:
 - FB parameters fluctuations far from real time
 - risk of empty FB domains
 - large redistributions from one border to the other
 - value of accessing capacity at all borders overlooked
- Adaptability of LT FBA to possible evolutions is uncertain (mutli-year LTTRs, more frequent auctions)

Our proposals to address concern on the economic efficiency of the flow-based allocation of LTTRs

Use the EC impact assessment to:

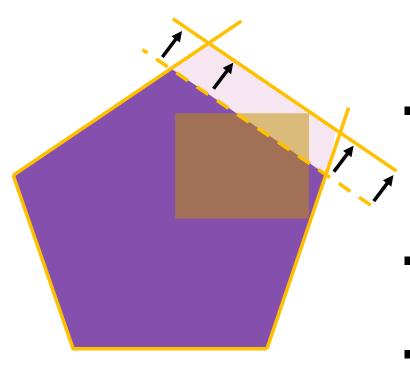
analyse overall economic efficiency of LTFBA, beyond the creation of auction surplus

analyse the compatibility of LT FBA with possible future evolutions of LTTR allocation

Concern 2: how can we guarantee fair access to LTTRs at all Core borders?

Reminder: in a flow-based auction, all borders compete simultaneously for cross-zonal capacity allocated through LTTRs

This creates situations of low or 0 LTTRs allocated at some borders


Eurelectric & Energy Traders Europe commissioned simulations by N-SIDE ()

Objectives:

- guaranteeing mandatory minimum volumes at <u>all borders</u>
- observing the effect of that on the auction surplus

- We looked at ensuring minimum that at least 50% of historic capacities were allocated at all borders
- We looked at the impact of this mitigation measure on the auction surplus
- We compared that to the effects of small variations in flow-based parameters

Which LT FB domains have been used for the simulations?

- In absence of publicly available *LT* FB data, 4 Core *DA* FB domains of 4 timestamps across the year have been retrieved
- Whenever necessary, the RAM values are increased to ensure that no CNEC is violated when ensuring that 50% of the average allocated volume over the last three years are made available to the market (MinRAM approach)
- For the flow-based domains considered in the study, only a few CNEC RAM's have been impacted by the process
- The optimisation function remains unchanged

What guaranteeing 50% of historical ATCs means for some Core borders in practice in the simulation

	Auction surplus	Volumes	Prices	
Belgium>Netherlands	431%	688%	-40%	
Austria>Germany	166%	382%	-52%	
Germany>Belgium	37%	51%	-19%	
Slovakia>Czechia	21%	48%	-24%	positively affected
Croatia>Slovenia	16%	28%	-14%	
Weighted averarge all Core borders	-1%	-0,19%	-3%	
Austria>Hungary	-8%	-11%	4%	
Czechia>Germany	-9%	-23%	51%	the 5 borders most
Netherlands>Belgium	-12%	-18%	6%	negatively affected
Germany>Netherlands	-12%	-18%	10%	j ,
France>Germany	-29%	-45%	76%	

Volume, price and auction surplus changes compared to no guaranteed minimum capacity, using bids from the 2023 auction, modelled on sample DA flow-based domains.

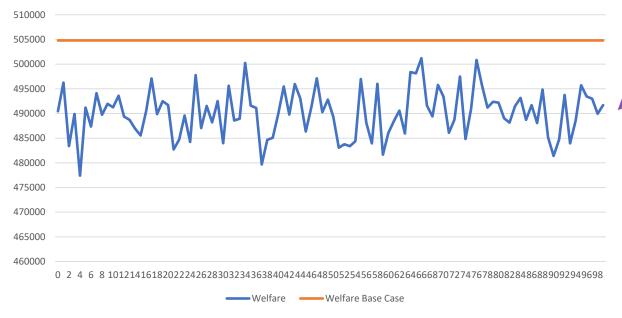
The additional optimization constraint mechanically leads to an overall degradation of the indicators, but in limited proportions

Applying even sizeable Min ATC values has little impact on auction surplus, total volumes allocated and prices

Relative differences (compared to LT FBA without minRAM)

Were at least 50% of historical ATCs guaranteed at all Core borders, our simulations show that:

the average prices decrease by 3%


the total allocated volume decreases by less than 1%

the auction surplus decreases by 1% (degradation paid by market participants, while TSOs see congestion income increase)

Small variations in FB parameters have a more significant effect on auction surplus than applying large minRAMs

- Simulation of 100 auction runs, with each time a random FB parameter variation between -10% and + 10% for each FB parameter (PTDF & RAM)
- The impact of such
 variations is an average
 decrease of 2.9% of the
 auction surplus (maximum
 decreases of 5.4)

Our proposals to address concern access to LTTRs at all Core borders

2 and guarantee fair

Use the time needed for the Commission's IA and the extra time given anyway by LT FBA go-live delay to:

agree on the merits of min capacity at all borders

propose a methodology and metrics

test the solution & implement it before go-live

Concern 3: how can we avoid that collateral requirements distort the best use possible of capacity?

Reminder: in a flow-based auction, all capacity bids for all borders need to be collateralised (financially guaranteed) at the same time

This creates a financial limitation to place capacity bids at some borders

Core TSOs studied the possibility to reduce collateral requirements

Objectives:

- reducing the limits to bid strictly linked to financial guarantees
- maintaining financial security for the TSOs

- TSOs proposed a cap on collateral requirements, based on what was achievable by November 2024
- ACER approved the TSOs proposal as provisional and gave directions for the ultimate solutions
- Market participants are still pushing for a collateral solution that includes:
 - a cap on collateral requirements calculated on forward electricity market spreads (rather than DA)
 - bid filtering performed during the auction process (rather than before the auction)

Our proposals to address concern 3 and limit the undue effects of collateral requirements on LTTR allocation

Use the time needed for the Commission's IA and the extra time given anyway by LT FBA go-live delay to:

include the final solution in the TSOs pipeline

test the solution & implement it before go-live

2. Proposals for a way forward

Let's remember what we all agree on

- Forward electricity markets are vital for the supply of electricity:
 - they represent 90% of trades (volume) in electricity markets
 - they help shield consumers of short-term price volatility
 - they contribute to securing the future of producers' assets
- LTTRs are a useful complement to forward electricity markets:
 - to protect against price fluctuations in case of cross-border trades
 - to facilitate proxy hedging in more liquid forward electricity markets
- The EU legislators asked for options to protect consumers better:
 - we need to find solutions that work in practice for the benefit of all
 - we should use the time and opportunities we have efficiently

Proposal to use our time and resources efficiently

EC

includes in impact assessment a study on the full benefits of LT FBA & compatibility with future design options

April → Nov. 2025

ACER

shares data and hypothesis from original 2021 simulations on auction surplus

now

sets new deadline for LT FBA go-live, considering EC's IA potential outcomes and necessary progress on mitigation measures

now + check in 2025

TSOs

shares data and hypothesis from 2023 and 2024 simulations on allocated volumes

now

works on mitigation measures for:

- ensure better availability of LT capacity
- access to min LTTR volumes at all borders - collateral easing

now → Nov. 2025

MPs

shares data and hypothesis from 2024 simulations on minRAMs

now

inputs on:

- EC work on LT FBA value
- TSOs work on min mitigation measures

now → Nov. 2025

Part 3 Ways forward

Indicative time	Webinar items
08:50 - 09:00	Webinar open for log-in
09:00 - 09:10	Introductory Remarks Zoran VUJASINOVIC, ACER
09:10 - 09:20	Long-term flow-based allocation: implementation - timeline and basic info Jim VILSSON, ENTSO-E
09:20 - 09:50	Long-term flow-based allocation: Simulation of results Cyriac DE VILLENFAGNE, ENTSO-E
09:50 - 10:10	ACER's views Martin POVH, ACER
10:10 - 10:35	Market participants' views Jerome LE PAGE, EFET
10:35 - 10:45	Ways forward Martin POVH, ACER
10:45 - 11:50	Discussion all
11:50 - 12:00	Closing Remarks Christophe GENCE-CREUX, ACER

Alternatives

The proposal of minATC

ACER is open to discuss this solution, some immediate concerns arise:

- 1. How to agree on min ATCs (given that similar process failed in the past)
 - Difficult discussions on who should get more capacity and why
- 2. What if minATC domain is not feasible (corners outside FB domain)?
- 3. How much economic efficiency we lose and how do we measure the economic gain?
- 4. Legality would require proposal and approval of amendments of 6 methodologies* at least 2 years additional delay

Article 16(6) of Electricity Regulation: In the case of congestion, the <u>valid highest value bids for network</u> <u>capacity</u>, whether implicit or explicit, offering the highest value for the scarce transmission capacity in a given timeframe, <u>shall be successful</u>.

Scarce transmission capacity is RAM on CNECs

^{*} Nordic LT CCM (2019) | Core LT CCM (2021/22) | SAP (2023) | CID FCA (2023) | FRC (2023) | HAR (2023)

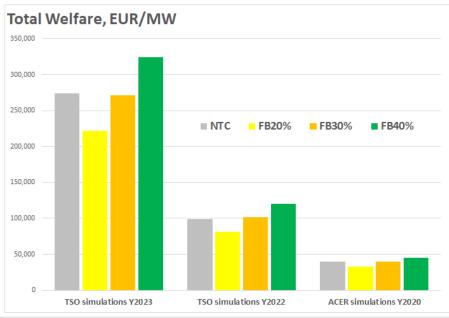
Looking at the future

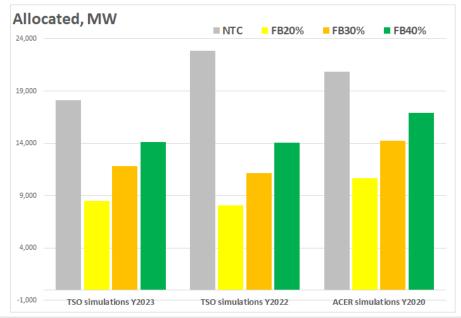
1. Statistical approach

- Longer maturities (up to 3 years ahead) require statistical approach to capacity calculation (no CGM for 3 years ahead)
- In Core CCR there will be no statistics on NTCs or min ATCs
- In core CCR, statistical approach can only be based on flow-based parameters

2. During EMD, two main options were discussed: Zone-to-Zone or Zone-to-Hub FTRs

- Any-zone-to-any-zone FTRs require competition among borders
- Zone-to-Hub FTRs require competition among borders


Proposed way forward


- FCA 2.0 will not result in any implementation before 2030 (~2.5 years for FCA EIF, ~4 years for implementation)
- We cannot afford no coordinated capacity calculation and allocation until 2030
- latest TSO simulations did not show different patterns from the ACER ones (made during the Core LT CCM referral)
 Economic surplus increases | allocated capacities decrease | redistribution between borders
- TSOs can still improve the level of offered capacities ACER propose historical NTCs as benchmark
- TSOs/JAO should still work on better solutions for collateral requirements
- ACER invites TSOs to continue testing, fine-tuning and improving the capacity calculation and test allocation
- In parallel to implementation, ACER invites all parties to continue discussing possible further adjustments ...
 ...yet, we don't see justified reasons to affect the implementation timeline.
- Existing legal obligations <u>are applicable</u>

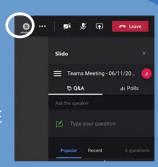
TSO simu	lations Y2023	NTC2023	FB20%		FB30%		FB40%		FBbyNTC	
	CONG.REVENUE [EUR]	202,905	170,091	-16%	197,040	-3%	223,520	10%		
	MPs SURPLUS [EUR]	70,985	51,739	-27%	74,066	4%	100,391	41%		
	SOC.WELFARE [EUR]	273,890	<u>221,830</u>	<u>-19%</u>	<u>271,106</u>	<u>-1%</u>	323,911	<u>18%</u>		
	ALLOCATED [MW]	18,139	8,509	-53%	11,816	-35%	14,141	-22%		
TSO simu	lations Y2022	NTC2022	FB20%		FB30%		FB40%		FBbyNTC	
	CONG.REVENUE [EUR]	76,175	65,409	-14%	72,546	-5%	82,342	8%		
	MPs SURPLUS [EUR]	22,673	16,393	-28%	28,782	27%	38,279	69%		
SOC.WELFARE [EUR]		98,848	<u>81,802</u>	<u>-17%</u>	101,328	<u>3%</u>	120,621	22%		
	ALLOCATED [MW]	22,840	8,093	-65%	11,180	-51%	14,051	-38%		
ACER simulations Y2020		NTC2020	FB20%		FB30%		FB40%		FBbyNTC	
	CONG.REVENUE [EUR]	30,549	26,022	-15%	31,353	3%	35,495	16%	39,600	30%
MPs SURPLUS [EUR]		9,391	6,604	-30%	8,605	-8%	10,038	7%	11,316	21%
SOC.WELFARE [EUR]		39,940	<u>32,626</u>	<u>-18%</u>	<u>39,958</u>	<u>0%</u>	<u>45,533</u>	<u>14%</u>	50,916	27%
	ALLOCATED [MW]	20,842	10,697	-49%	14,247	-32%	16,937	-19%	16,385	-21%

Results Core LTFBA simulations of yearly auctions

Very similar behaviour in ACER's and TSOs' analyses

Level of minRAM applied:

20%, 30%, 40%, "FBbyNTC": minRAM per CNECs defined by converting the NTCs to FB (≡ same level of system security NTC<->FB)



Discussion

Connect to Slido

- Directly in MS Teams
- Through <u>www.slido.com</u> #ACER-ENTSO-E
- Scan the QR code
- Use direct link:

https://app.sli.do/event/4JrQofwANvNgPD3RuNu6gw

