

CIMSYNTAXGEN MANUAL
Draft v10.0.3 | 30 January 2025

For CimSyntaxGen software version 4.0.15

ICTC approved on 13 February 2025

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 2 of 84

 ENTSO-E Mission Statement

Who we are

ENTSO-E, the European Network of Transmission System Operators for Electricity, is the association for the cooperation of the

European transmission system operators (TSOs). The 40 member TSOs, representing 36 countries, are responsible for the secure

and coordinated operation of Europe’s electricity system, the largest interconnected electrical grid in the world. In addition to its

core, historical role in technical cooperation, ENTSO-E is also the common voice of TSOs.

ENTSO-E brings together the unique expertise of TSOs for the benefit of European citizens by keeping the lights on, enabling the

energy transition, and promoting the completion and optimal functioning of the internal electricity market, including via the

fulfilment of the mandates given to ENTSO-E based on EU legislation.

Our mission

ENTSO-E and its members, as the European TSO community, fulfil a common mission: Ensuring the security of the inter-connected

power system in all time frames at pan-European level and the optimal functioning and development of the European

interconnected electricity markets, while enabling the integration of electricity generated from renewable energy sources and of

emerging technologies.

Our vision

ENTSO-E plays a central role in enabling Europe to become the first climate-neutral continent by 2050 by creating a system that

is secure, sustainable and affordable, and that integrates the expected amount of renewable energy, thereby offering an essential

contribution to the European Green Deal. This endeavour requires sector integration and close cooperation among all actors.

Europe is moving towards a sustainable, digitalised, integrated and electrified energy system with a combination of centralised

and distributed resources. ENTSO-E acts to ensure that this energy system keeps consumers at its centre and is operated and

developed with climate objectives and social welfare in mind.

ENTSO-E is committed to use its unique expertise and system-wide view – supported by a responsibility to maintain the system’s

security – to deliver a comprehensive roadmap of how a climate-neutral Europe looks.

Our values

ENTSO-E acts in solidarity as a community of TSOs united by a shared responsibility.

As the professional association of independent and neutral regulated entities acting under a clear legal mandate, ENTSO-E serves

the interests of society by optimising social welfare in its dimensions of safety, economy, environment, and performance.

ENTSO-E is committed to working with the highest technical rigour as well as developing sustainable and innovative responses to

prepare for the future and overcoming the challenges of keeping the power system secure in a climate-neutral Europe. In all its

activities, ENTSO-E acts with transparency and in a trustworthy dialogue with legislative and regulatory decision makers and

stakeholders.

Our contributions

ENTSO-E supports the cooperation among its members at European and regional levels. Over the past decades, TSOs have

undertaken initiatives to increase their cooperation in network planning, operation and market integration, thereby successfully

contributing to meeting EU climate and energy targets.

To carry out its legally mandated tasks, ENTSO-E’s key responsibilities include the following:

› Development and implementation of standards, network codes, platforms and tools to ensure secure system and market

operation as well as integration of renewable energy;

› Assessment of the adequacy of the system in different timeframes;

› Coordination of the planning and development of infrastructures at the European level (Ten-Year Network Development Plans,

TYNDPs);

› Coordination of research, development and innovation activities of TSOs;

› Development of platforms to enable the transparent sharing of data with market participants.

ENTSO-E supports its members in the implementation and monitoring of the agreed common rules.

ENTSO-E is the common voice of European TSOs and provides expert contributions and a constructive view to energy debates to

support policymakers in making informed decisions.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 3 of 84

TABLE OF CONTENTS

CIMSyntaxGen manual .. 1

Table of Contents ... 3

1. EXECUTIVE SUMMARY .. 7

Licensing ... 8

Notice .. 8

1. Modelling methodology reminder .. 9

1.1. Modelling Methodology .. 9

1.2. CimSyntaxGen Add-In and Modelling Methodology .. 11

2. Important things to remember when doing syntactic generation .. 12

General ... 12

2.1. WARNING.. 12

3. Class Packages Template and Dependencies ... 13

4. Datatypes package template and dependencies .. 15

5. CimSyntaxGen Add-In Installation and Overview .. 16

5.1. Downloading “CimSyntaxGen” .. 16

5.2. Before installing “CimSyntaxGen” ... 17

5.3. Installation .. 17

5.4. License .. 17

5.5. Configuration ... 18

5.6. Overview ... 20

5.7. "RDF" Menu .. 21

5.8. “XSD” Menu ... 22

5.9. “Html documentation” Menu ... 23

5.10. "Manage CodeLists" Menu .. 24

5.11. "Json" Menu .. 25

5.12. "Options" Menu ... 26

5.13. "CodeComponent" Menu ... 27

5.14. “About” Menu .. 28

6. How to use CimSyntaxGen Add-In for syntactic model generation 28

7. RDF Schema generation ... 29

7.1. Overview ... 29

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 4 of 84

7.2. Recommended pre-requisite ... 30

7.3. Select profile package ... 30

7.4. DCAT-3 compliance .. 30

7.5. Launch RDFS generation.. 31

8. Generation of RDFS according to 501:2006 augmented style .. 31

8.1. Overview ... 31

8.2. New file structure .. 32

8.3. Copyright .. 32

8.4. Special characters handling .. 33

8.5. Launch RDFS augmented generation ... 33

9. Generation of RDFS according to 501-Ed2 ... 37

9.1. Overview ... 37

9.2. New file structure .. 38

9.3. Copyright .. 38

9.4. Special characters handling .. 38

9.5. Flattening datatypes .. 38

9.6. Launch 501-Ed2 generation .. 38

9.7. XSD Generation .. 42

10. Generation of WG19 style XSD ... 42

10.1. Overview ... 42

10.2. Root Class checking .. 42

10.3. Error Message: no root class ... 43

10.4. Select profile package and launch XSD WG 19 ... 44

11. Generation of WG16 Style XSD ... 46

11.1. Overview ... 46

11.2. Root Class checking .. 47

11.3. Select Assembly Model package and launch XSD WG 16 ... 47

11.4. ENTSO-E parameters ... 48

11.5. Generation process ... 49

12. XSD by Ref ... 50

13. XSD to Prof Menu .. 51

14. How to use CimSyntaxGen for HTML documentation generation 53

14.1. Overview ... 53

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 5 of 84

14.2. Select profile package ... 53

14.3. Select HTML generation ... 54

15. Generic HtmlDocumentation generation ... 54

15.1. Overview ... 54

15.2. HTML file ... 54

15.3. HTML generation example using the CIM to build a Work Profile..................................... 55

16. How to use CimSyntaxGen for HTML ENTSOE Documentation generation 57

17. How to use CimSyntaxGen for ESMP HTML documentation generation 58

Overview ... 58

17.1. ENTSO-E Documentation ... 58

17.2. Part 351 IEC standard generation .. 59

17.3. Conceptual and assembly models IEC standard generation .. 59

17.4. Set of conceptual and assembly models IEC standard generation 59

18. How to use CimSyntaxGen for AsciiDoc documentation generation 60

18.1. Overview ... 60

18.2. Document generation .. 60

19. How to use CimSyntaxGen to Manage CodeList ... 60

19.1. Description.. 60

Import .. 61

19.2. Generation of the codelists and documentation ... 61

20. JSON Schema export .. 62

20.1. Overview ... 62

20.2. JSON schema versions .. 62

20.3. UML profile styles ... 63

20.4. Connectivity between Schema, Codelist and External Codelist files 63

20.5. External CodeList Management ... 63

20.6. Launching Json schema export ... 65

21. Generation of JSON Schema WG19 Style.. 65

22. Generation of JSON Schema WG16 Style.. 67

22.1. Launching Json schema export ... 67

22.2. CodeList management .. 68

23. Avro Schema export .. 68

23.1. Overview ... 68

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 6 of 84

23.2. Codelist ... 68

24. Code Component export .. 69

24.1. Overview ... 69

24.2. IEC Copyright files ... 69

24.3. Delivery package name ... 69

24.4. Launching CodeComponent ... 70

25. CimSyntaxGen configuration file .. 71

25.1. Managing configuration file .. 71

25.2. Overview ... 71

25.3. AppSettings parameters .. 71

25.4. DataProfile parameters ... 73

25.5. Profdata parameters ... 74

25.6. Profstereo parameters ... 76

25.7. SHACL parameters .. 76

25.8. JSON parameters ... 77

26. UML/XSD generation principles ... 77

26.1. XSD generation basic principles ... 77

26.2. CIMDatatype generation principles .. 79

27. Subclass inherited association and XSD generation principles 80

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 7 of 84

1. EXECUTIVE SUMMARY

CimSyntaxGen is an Enterprise Architect Add-In and a companion tool for CimConteXtor. It has three
functionalities:

• Generate syntactic models from EA packages. The first syntactic generations are W3C XML
(Extensible Markup Language) Schema, RDF (Resource Description Framework) Schema,
JSON (Java Script Object Notation) Schema and Avro Schema.

• Generate HTML and AsciiDoc documentation from EA packages,

• Manage CodeLists.

CimSyntaxGen’s syntactic generations are based on IEC (International Electrotechnical Commission)
TC 57 standards: IEC 61970-501 (CIM RDF Schema), IEC 62361-100 (XML Naming and Design Rules),
and IEC 62361-104 (CIM profiles to JSON schema mapping).

NOTE: To use CimSyntaxGen Add-In, one should be familiar with:

‒ UML class diagram modelling,

‒ Enterprise Architect UML tool,

‒ Rules for creating a profile based on a UML Information Model (see Annexes of the
CimConteXtor user’s manual and UN/Cefact1 CCTS)

‒ W3C2 XML Schema Recommendation,

‒ W3C RDF Schema Recommendation,

‒ IEC TC 57 61970 - 501 "CIM Resource Description framework",

‒ IEC TC 57 62361-100 "XML Naming and Design Rules,”

‒ IEC TC 57 62361-104 draft "CIM profiles mapping to JSON schema".

“Enterprise Architect” is a tool developed and distributed by Sparx System.

CimSyntaxGen was originally developed at Zamiren by Sébastien Maligue-Clausse, André Maizener
and Jean-Luc Sanson and distributed under CeCILL-B open-source license.

ENTSO-E contributed expanding CimSyntaxGen and publishes it under the Apache 2.0 license on the
ENTSO-E website. The open-source tool development is under governance of ENTSO-E.

1 UN/Cefact : United Nations Center for Trade Facilitation and e-Business
2 W3C : World Wide Web Consortium

http://www.w3.org/
http://www.w3.org/standards/xml/schema
http://www.w3.org/TR/2004/REC-rdf-schema-20040210
http://www.iec.ch/
http://www.unece.org/cefact
http://www.w3.org/standards/xml/schema
http://www.w3.org/TR/2004/REC-rdf-schema-20040210
http://www.sparxsystems.com/
https://www.zamiren.fr/index.php/en/
https://www.entsoe.eu/data/cim/#cim-profiling-tools
http://www.unece.org/cefact
http://www.w3.org/

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 8 of 84

Licensing

Licensed to the Apache Software Foundation (ASF) under one

or more contributor license agreements. See the NOTICE file

distributed with this work for additional information

regarding copyright ownership. The ASF licenses this file

to you under the Apache License, Version 2.0 (the

"License"); you may not use this file except in compliance

with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,

software distributed under the License is distributed on an

"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

KIND, either express or implied. See the License for the

specific language governing permissions and limitations

under the License.

Notice

Apache CimSyntaxGen

Copyright 2025 The Apache Software Foundation.

Portions of this software were developed at ENTSO-E (https://www.entsoe.eu/) and Zamiren
(https://www.zamiren.fr/index.php/en/).

https://www.entsoe.eu/
https://www.zamiren.fr/index.php/en/

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 9 of 84

1. Modelling methodology reminder

1.1.Modelling Methodology

The methodology that is behind CimConteXtor and CimSyntaxGen Add-Ins is derived from UN/Cefact
Core Component Technical Specification (CCTS), has been adapted for IEC needs, and defines four
modelling levels:

1. the Information Model level that defines a domain model (for example, the CIM for
Electrotechnical Domain),

2. the Profile Model Level, which defines how this information model is used in a context, or
which subset of this information model is used in some given context (example CPSM—
Common Power System Modelling—for power network exchange): This is the concept of
“IsBasedOn”,

3. the Assembly level, that defines how the profile artefacts are assembled for exchange,

4. the syntax level, that defines in which syntax the exchange will take place and how the
Assembly level will be mapped to the chosen syntax.

1

UML

Information

Model

UML Profile

Model

UML Assembly

Model

Implementation

Syntactic

Model

Profile Derivation

In a given Context

Implementation

Derivation

In a given Context

IsBasedOn

CONTEXT

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 10 of 84

The first three levels are modelled in UML.

NOTE: a profile could be based on another profile (recursion): this is used for example for ESMP
profiles, where there is an additional level (called Regional Profile) to mutualize some specific
restrictions on an appropriate subset of the information model. So, the UML levels could be like:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 11 of 84

UML Profile

(Contextual Model) UML Profile

(Contextual Model)

UML

Information

Model

UML Profile

(Contextual Model)

UML Assembly

Model

IsBasedOn

UML Profile

(Regional Model)

IsBasedOn

Profiles could be
based on other
profiles. Example:
ESMP profiles are
based on a first
common profile

1.2.CimSyntaxGen Add-In and Modelling Methodology

CimConteXtor is a tool that builds a UML Profile (and optionally a UML Assembly Model) based on a
UML Information Model (See CimConteXtor user Guide for profile and Assembly model generation).

CimSyntaxGen Add-In is a companion tool for CimConteXtor that generates syntactic schemas (XSD
or RDFS) according to given Syntax Naming and Design Rules.

1

UML

Information

Model

UML Contextual

Model

UML Assembly

Model

Implementation

Syntactic

Model (Profile)

CimConteXtor

Contextual Model

IsBasedOn

its Parent Model

According to defined Rules
.

CimSyntaxGen

XSD, RDFS, OWL…

Profile Derivation

In a given Context

Implementation

Derivation

In a given Context

IsBasedOn

Contextual Model is a subset

of its Parent Model :
With some restrictions

But without any additions

Assembly Model

specify structures

for profile exchange

Syntactic Model

is generated

according to defined rules

C
O

N
T

E
X

T

EA Addin

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 12 of 84

CimSyntaxGen Add-In implements Syntactic model generation, for both RDFS, XSD and Json Schema
that conform to IEC standards.

Next CimSyntaxGen Add-In versions will implement other syntactic models, when specifications will
be available.

Apart from syntactic model generation, CimSyntaxGen provides also other features like model
documentation generation.

2. Important things to remember when doing syntactic
generation

General

The profile, from which you want to generate a syntactical model, SHALL

• be clearly identified as a specific package (and sub-packages),

• have explicit “IsBasedOn” dependencies with Information Model packages see
“Packages Template and dependencies” section below,

• use datatypes (and compounds) that are clearly identified:

• they belong to specific packages both at Information Model (for example
"Domain" package in CIM) and profile levels

• their names are unambiguous on the project or profile name space,

• use datatypes that have all their “IsBasedOn” dependencies defined,

• follow the naming rules defined in the modelling methodology for Class, Attribute,
Association role end, Datatype names.

More, when the target is an XSD, CimSyntaxGen Add-In is performing some functionalities that,
normally, are performed by the UML Assembly level like adding a header (named “Envelop” in IEC
62361-100) and its relationships with profile root classes.

2.1.WARNING

Important things to remember when creating an XSD or a Json schema:

• Verify that the selected package is the UML profile or assembly model package for
which you want to generate the schema,

• Verify that all attribute types used in this profile are conforming to the datatype
options you choose (See CimConteXtor Integrity Check feature):

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 13 of 84

• could be any datatype (or primitive, enumeration, compound) on the project
name space: this imply that all these elements have a unique name on that
name space,

• could only be datatype belonging to the profile: this means that uniqueness is
just on the profile name space.

• Verify that there is a root class.

3. Class Packages Template and Dependencies

“IsBasedOn” Package Hierarchy must be defined now when you work out Package Template
definition.

The “IsBasedOn” hierarchy could be of different kinds:

1° Profile Package is “IsBasedOn” an Information Model Package:

==> Profile classes are « IsBasedOn » on Information Model Package classes. Information Model
Package can have sub-packages or not. But in the profile package there are no sub-packages.

2° A Profile Package has Sub-Packages and is based on an Information Model Package Dependency

Profiles rules:

• All profile classes are in sub-packages,

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 14 of 84

• all profile classes names are unique in the context of the profile package (a
profile sub-package class could not have the same name as another class of
the sub-package, but also as another class in another different profile sub-
package),

• associations between sub-package classes are allowed.

or

3° Profile packages are « IsBasedOn » an Information Model Package and are grouped in a common
Package that is not itself « IsBasedOn » the Information Model

This is the case when different profiles are made in each Context:

• All profile class names are unique in the context of a sub-package (classes in
different profile sub-packages could have the same names).

• Associations between classes of different sub-packages are not allowed.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 15 of 84

4° Sub-packages classes are based on the package classes

This case will happen when doing sub-profiles which are based on a given profile.

Profile Package is “IsBasedOn” an Information Model Package. Profile classes are contained in the
Profile Package and are not organized in sub-packages.

Sub-Profile packages are contained by the profile package.

This case is like the following one:

4. Datatypes package template and dependencies

There are different ways to manage and use profile primitives, enumerations, datatypes and
compounds. This must deal primarily with profile package standalone capacity and with datatypes
reusability.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 16 of 84

1° If you want profile standalone package, then all the primitives, enumerations, datatypes and
compounds that are used in the profile package must be defined in this profile package or in a profile
sub-package best named “Profile Domain”.

In this case:

• primitives, enumerations, datatypes and compound names should be unique in the
profile name space,

• but it means also that, if you use primitives, enumerations, datatypes or compounds
already defined at the Information Model level, you should recreate them (with
“IsBasedOn” function) at the profile level. When doing that, profile elements could
have the same names as the Information model level ones.

2° If you do not want profile standalone package, then primitives, enumerations, datatypes and
compounds that are used in the profile package could be defined at any modelling level. This means:

• that primitive, enumeration, datatype and compound names must be unique on the
project name space (use of qualifier is required when doing an “IsBasedOn”).

3° If you want datatype reusability in multiple profiles, the best is to put all primitives, enumerations,
datatypes and compounds in a shared “Domain” package. This will imply that all names are unique
on the project name space (use of qualifier is required when doing an “IsBasedOn”).

5. CimSyntaxGen Add-In Installation and Overview

5.1. Downloading “CimSyntaxGen”

On the ENTSO-E website, you can find a .zip file containing:

• CimSyntaxGenSetup_installer: An ENTSO-E signed Windows installer (.exe and .msi files).

• LICENSE.txt: The Apache 2.0 license.

• NOTICE.txt: File used to include third application party notice.

• key_20270101.txt: A general license key with an expiry date 01/01/2027. ENTSO-E will
update this key accordingly.

• CimSyntaxGen_Manual_v10-0-3.pdf: A manual with the necessary documentation. This is
the current document the user is reading.

• cimsyntaxgen_SourceCode.zip: A package with the source code.

https://www.entsoe.eu/data/cim/#cim-profiling-tools

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 17 of 84

5.2. Before installing “CimSyntaxGen”

Check on ENTSO-E site (https://www.entsoe.eu/data/cim/#cim-profiling-tools) the version you are
using and the requirement for it in terms of Operating Systems and Enterprise Architect version
compatibility.

5.3.Installation

To install CimConteXtor, double-click on the delivered “SetupCimSyntaxGen.msi” file and follow the
wizard instructions (Do remember to uninstall a previous installed version through the Windows
“Add or suppress programs”).

NOTE: CimSyntaxGen versions before 2024 required installing Python for JSON and AVRO schema
generation. Newer versions since end of 2023 include these schema generations in the Add-in. An
installation of Python is not necessary anymore.

5.4.License

To be able to use CimSyntaxGen it is necessary to load a valid license. The license is a text file
containing the license key and is provided by ENTSO-E.

After installing CimSyntaxGen you open the menu of the Add-in in the EA’s Ribbon “Specialize”:

This will open a dialogue enabling to load the license file:

When the file is selected and loaded by pressing the button ‘Save’, the license is stored encrypted in
a file in the CimSyntaxGen resources directory. After that the license file is not needed anymore. If
the encrypted file is removed and the Add-in is used, a warning message of an invalid license will
come up and the Add-in will not work anymore. To continue to work requires a re-loading of a valid
license file.

https://www.entsoe.eu/data/cim/#cim-profiling-tools

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 18 of 84

A warning mechanism starts to inform 14 days before expiry of the license how much days are still
left till a renewal of the license is necessary.

5.5.Configuration

The CimSyntaxGen has a built-in default configuration. Menu entries enable to import and export
the configuration. If a custom configuration is imported as XML file, the default configuration is
replaced and the custom configuration is stored in the EA project as Notes of an element
“CimSyntaxGen ” in a package “Configuration”.

This mechanism enables to install the CimSyntaxGen without having to care about a meaningful
configuration. After installation the Add-In is ready for use without external configuration XML file.

In addition, the configuration parameters can be edited via a dialogue (menu entry ‘Configuration /
Configuration Editor’):

The following actions are possible with a configuration file:

1. Installing and using the CimSyntaxGen Addin without external configuration file:

The Addin is installed and can be used right away. The default configuration is internally in

the EA package ‘Configuration’ in the tagged values of the element ‘CimSyntaxGen’.

NOTE: It is not intended to edit the configuration directly there. CimSyntaxGen contains a

configuration editor (see below) to enable amending the configuration.

2. Import of a custom configuration:

An existing custom configuration XML file can be imported by the Menu “Import

Configuration”:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 19 of 84

The custom configuration replaces the default configuration and is stored in the element

“Configuration” in a newly created package “CimSyntaxGenConfiguration”:

When loading the XML configuration, a quick XML validation routine checks the

configuration file. If there is an error in the XML a message is displayed telling the possible

reason (e.g. an XML element name is misspelled and which element).

3. Changing the configuration

Each change of the configuration (Menu item “Options”) causes either the creation of a

custom configuration stored in the model (as described below in the element

‘Configuration”) or an update of the configuration, if there exists already a custom

configuration.

4. Export of a configuration

There is a menu entry for the export of the configuration:

This opens a dialogue for storing the configuration XML file.

If there is no custom configuration, the default configuration is exported. This enables to

check the default configuration.

5. Editing the configuration via the ‘Configuration Editor’ dialogue.

The dialogue lists on the left-hand side the parameters divided in categories. Clicking on a

parameter updates the right-hand side showing the attributes of the parameter with the

current value. The value can be changed. When saving the changes the configuration is

automatically updated.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 20 of 84

5.6.Overview

CimSyntaxGen Add-In is managed as an EA Add-In. It is referenced in the EA tool bar in "Extension":

The CimSyntaxGen Add-In is enabled after installation. The Add-In can be switched off by disabling
it. To do that, click on the “Manage Add-Ins”, this will display the “Manage Add-Ins” window where
you tick off CimSyntaxGen’s checkbox:

:

Check Enabled box to use CimSyntaxGen

CimSyntaxGen Add-In has the following functionalities that are given by the CimSyntaxGen Add-In
Menu items:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 21 of 84

5.7."RDF" Menu

The “RDF Menu” is used to generate RDF Schemas.

￼

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 22 of 84

Four kinds of RDF Schemas can be generated:

• IEC 61970-501:2006: RDF Schema conforming to IEC TC 57 61970 – 501 Ed1,

• IEC 61970-501:2006 augmented (2019): RDF Schema with some syntactical differences
with RDFS 501 Ed1.

• IEC 61970-501:2006 augmented (2020): RDF Schema with Profile version class and
header.

• IEC 61970-501:Ed2: RDF Schema conforming to IEC TC 57 61970 – 501 Ed2 draft.

5.8.“XSD” Menu

The “XSD Menu” is used to generate XML Schemas.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 23 of 84

Three kinds of XML Schemas can be generated:

• XSD WG19: XML Schema conforming to IEC 62361-100 "XML Naming and Design Rules"
standard,

• XSD WG19: by Ref: use with Graph profiles to generate XML Schema conforming to IEC
62361-100, but using the "by Ref" feature,

• XSD WG16: XML Schema conforming to IEC 62361-100 "XML Naming and Design
Rules", using different options than the ones used for XSD WG19.

"XsdToProf" Menu is used for reverse engineering: map an XML Schema to UML, based on a CIM
model.

5.9.“Html documentation” Menu

The “Html Documentation” menu lets you generate the html documentation of a UML package,
according to different contexts:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 24 of 84

There are three different contexts:

• HtmlDocumentation: standard output for TC/57/WG13 profiles (basically CPSM),

• ESMPHtmlDocumentation: outputs for TC57/WG16 European Style Market profile. This
output could be further tailored for specific purposes:

o Output of both Contextual and Assembly Models,

o Output of a regional profile (basically IEC 62325-351),

o Output of a full package with multiple contextual and assembly models,

o Output used for ENTSO-E Market Documentation

• HtmlENTSOEDocumentation: output for ENTSOE CGMES.

5.10."Manage CodeLists" Menu

The "ManageCodeLists" is used in ESMP Profile to import ENTSO-E CodeLists in a UML package or to
generate the ENTSO-E XSD CodeLists with the associated documentation and to export Codelists in
JSON format. In addition, it is possible to export a JSON codelist template for local codelists (see
JSON schema generation):

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 25 of 84

NOTE: to generate a CodeList XSD from "351" enumeration, do not forget to create for new
enumeration a "Uid" Tagged Value with the proper value.

5.11."Json" Menu

The “JSON Menu” is used to generate JSON and AVRO Schemas.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 26 of 84

Three kinds of Schemas can be generated:

• Json WG19: Json Schema conforming to IEC 62361-104 "CIM Profiles mapping to Json
schema" standard,

• Json WG16: Json Schema conforming to IEC 62361-104, using different options than the ones
used for XSD WG19, especially the use of external codelists.

5.12."Options" Menu

The "Option" Menu is used in parallel with CimSyntaxGen configuration file. It lets you fix some
parameters used by CimSyntaxGen to tailor some behaviors:

• Log or not results of command,

• Use of XmlBase in schema generations,

• For RDFS generation, use namespace for stereotyped element output,

• For RDFS generation, do things in Batch Mode,

• For XSD generation, output or not "sawdl" elements

• For Graph profiles, differentiate outputs with according to stereotypes:

o For HtmlDoc output, order or not order output by stereotypes,

o For RDFS output, use or not a specific name space for each stereotypes.

The list of stereotypes is given by the configuration file, but the option menu lets you extend this
list.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 27 of 84

The "Save" button updates the configuration file (see configuration file section).

5.13."CodeComponent" Menu

The "CodeComponent Menu" manage the inclusion of code component(s) into an IEC deliverable,
produce and publish such code component(s) as a package, according to the proposal: "Handling of
Code Components in IEC Standards, including Copyright Licensing v8.0 - 2019-08-23". For this
version, it is tailored for WG16 ESMP code components.

The menu allows gathering copyright information and generation of a Core Components delivery
package.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 28 of 84

The Core Component delivery package is a zip file, which includes:

• a manifest xml file (conforming to the IEC Manifest XSD) that describes:

o the publication(s) from where the CodeComponents are defined,

o the CodeComponent file(s) description,

o the History file(s) describing the changes which have been considered in the
associated package, since the last IEC publication (at least).

• An IEC copyright XML file (conforming to the IEC Copyright XSD).

• the code component file(s) extracted from the IEC publication(s) (typically XSD file, XML file,
SNMP MIB file …).

5.14.“About” Menu

The “About” menu is used to give information on the current CimSyntaxGen Add-In, like version,
release date, expiration date and license agreement.

6. How to use CimSyntaxGen Add-In for syntactic model
generation

There are several steps to use CimSyntaxGen Add-In:

1. Define the package that serves as the starting point for the generation,

2. Verify that there is a least one root class if you want to generate an XSD,

3. Define all parameters (profile name space for example) for syntactic model,

4. Define syntactic model name, version and location,

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 29 of 84

5. Launch appropriate CimSyntaxGen Add-In function.

7. RDF Schema generation

7.1.Overview

RDF Schema generation is done according to:

• IEC 61970 part 501 Ed1 standard, with some extensions:

class LoadModelNotes

Confor mLoadSchedule
Because value1 will always be specified in MW and value2 will always be specified in MVAr, the

value1Multiplier and value2Multiplier attributes do not need to be specified.

Inheritance pass is given if
"EntsoeKeepInheritancePath" is
checked in the configuration file

Hyperlinks are active if
"EntsoeKeepHyperlinks" is checked
in the configuration file

Profile specific notes are
highlighted in blue

• "cims:IsDefault" and "cims:IsFixed" for specifying attribute default and fixed
values,

• "cims:datatype" to state which datatype is used for an attribute value,

• "cims:AssociationUsed" to define which association will be used in the RDF
instances.

• IEC 61970-501 augmented (stamped as 2019 version):

• use of 501 Ed1 with modifications adopted for IEC interop tests (mainly
everything is described by a "rdf:description" instead of "rdfs:class" or
"rdf:property",

• presence in UML of a <profilename>Version class,

• possible use of a copyright comment.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 30 of 84

• IEC 61970-501 augmented (stamped as 2020 version):

• use of 501 Ed1 with modifications adopted for IEC interop tests (mainly
everything is described by a "rdf:description" instead of "rdfs:class" or
"rdf:property",

• possible use of a copyright comment,

• Use of a header part that takes into account a new "Ontology Profile class"
included in the UML profile.

• IEC 61970 part 501 Ed2 draft standard:

• Generation of two files: one for the vocabulary and one for the constraints
expressed as SHACL shapes,

• Possible use of a copyright comment,

• Use of a header part.

7.2.Recommended pre-requisite

Before launching the RDFS export, it is wise to check if the UML profile is valid, by making a
CimConteXtor Utilities "CGMES Integrity check" before. The result CVS file is named
"CheckError<ProfileName>.cvs" and is stored in:

"C:\Users\<UserName>\AppData\Roaming\ENTSO-E\CimContextor"

7.3.Select profile package

The first step is to select the package on which you want to apply RDFS generation.

NOTE: CimSyntaxGen Add-in will use this profile package to generate all selected package (and/or
its sub-packages) classes and their properties. But it will grab all the datatypes that have been used
in the profile packages where it will find them (see datatypes template and dependencies section).

7.4.DCAT-3 compliance

In compliance to the Data Catalog Vocabulary (DCAT) Version 3, the RDF generation includes now
the following attributes of the Header (see ENTSO-E’s METADATA AND DOCUMENT HEADER DATA
EXCHANGE SPECIFICATION V2.2 3)

• dcat:version
Specifies the version.

3 https://eepublicdownloads.entsoe.eu/clean-
documents/CIM_documents/Grid_Model_CIM/MetadataAndHeaderDataExchangeSpecification_v2.2.pdf

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 31 of 84

• dcterms:title
Specifies the title.

• adms:versionNotes
A description of changes between this version and the previous version of the resource.

• dcterms:issued
Specifies the release date.

7.5.Launch RDFS generation

Go to the EA “Add-Ins” Menu, select “RDF” and select “IEC 61970-501:2006”, "IEC 61970-501:2006
augmented (2019)", "IEC 61970-501:2006 augmented (2020)" or "IEC 61970-501:Ed2":

If "IEC 61970-501:2006" is selected, “Windows save file” window will be displayed to select where
you want to put the RDFS file and how you will name it.

If another choice is selected (501:2006 augmented or 501-Ed2), then appropriate dialog will be
started.

8. Generation of RDFS according to 501:2006 augmented
style

8.1.Overview

Two kinds of RDFS augmented could be generated:

• "IEC 61970-501:2006 augmented (2019)" nearly the same as the old RDFS augmented, with
two new options:

o Add Copyright as a comment,

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 32 of 84

o Map special characters of the comment section.

• "IEC 61970-501:2006 augmented (2020)", with following changes and options:

o Only applies to new UML Profiles with an Ontology Class,

o Add Copyright as a comment,

o Map special characters of the comment section.

o Copyright in Ontology Class <dcterms:rights>

o Use of header

o New file structure

8.2.New file structure

The new file structure is the following one:

• Beginning: <rdf:RDF xmlns….

• Copyright as a comment (option)

• Header part, only for RDFS 2020 augmented style with:

o rdf:description of the Profile_Ontology Class,

o Copyright in OntologyClass.rights

• Profile part in case of RDFS 2019 augmented including all profile classes and:

o ProfileVersion Class

o Ontology Class if present

• Profile part of RDFS 2020 augmented including all profile classes except Profile_Ontology
Class.

8.3.Copyright

A copyright notice could be added in the RDFS file as a comment for RDFS 2019 and 2020. This notice
could be also inserted as a "dcterms:rights" tag in the "Profile_Ontology" class.

The notice is in the form of:

< Copyright >

 < Notice >

COPYRIGHT (c) IEC 2020

This version of this RDFS is part of IEC 61970-DiagramLayoutProfile see the IEC 61970 for full legal notices.

In case of any differences between the here - below code and the IEC published content, the here - below
definition supersedes the IEC publication.
it may contain updates. See history files (if it exists).

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 33 of 84

The whole document shall be taken into account in order to have a full description of this code component.

See www.iec.ch/CCv1 for copyright details

 </Notice>

 <Notice >

RDFS for 61970-DiagramLayoutProfile version=3.0.0 released 2020-07-14 as Draft

 </ Notice >

 <License uri =" www.iec.ch/CCv1 " kind ="Draft" > IEC License </ License >

</Copyright>

The appropriate fields are coming from a dialog box when you launch the RDFS generation (see
below). Those fields are also updated and kept in the configuration file.

8.4.Special characters handling

In the comment part of an element there could be characters that are XML mark-up characters (like
<, >, &, " and '). These characters must not be interpreted as mark-up of the RDF file. There are two
ways to handle this:

• Use the rdf:parseType="Literal" feature,

• Or map those special characters.

The option is open to use one or the other. If mapping is selected, the mapping will be:

 & - &

 < - <

 > - >

 " - "

 ' - '

A comment like "OPC Unified Architecture" will be generated as:

If no mapping is selected":

<rdfs:comment parseType="Literal">

<i>OPC Unified Architecture</i>

If mapping is selected:

<rdfs:comment rdf:datatype=http://www.w3.org/2001/XMLSchema#string>

<i>OPC Unified Architecture<i>

8.5.Launch RDFS augmented generation

RDFS (Augmented) has been selected, a first dialog window will appear:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 34 of 84

There are two parts in the dialog box:

• The left part is about copyright information,

• The right part is the choice for RDFS generation.

Fulfill Copyright information part:

Then fulfill the left part:

• Check or enter the namespace of the profile

• Check if mapping of special characters

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 35 of 84

• Check if you want to have element with its description

• Or if you do not want the full description, except for element with a given stereotype:

Once the required information has been entered, click "OK", a new window will be displayed:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 36 of 84

This window is used to say if you want to use or not special namespace for elements that are
stereotyped. The list of stereotypes (defined in the configuration file or in the Option Menu) is
shown:

• If stereotype boxes are selected, the default name space (the profile one) will be used,

• If stereotype box is unchecked, a namespace will be used for these stereotype elements. The
default namespaces are given by the configuration file. But this can be changed if stereotype
box is unchecked: a new namespace could be edited and save in the configuration when
clicking on the OK button.

By saying OK, the RDFS generation process is launched, a window is popping up to give the name of
the file and its location, then the generation is finished, the “End” window is displayed:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 37 of 84

The RDF file has been created alongside with a log file named “CimSyntaxGenReport.txt”:

NOTE: RDFS augmented parameters are given by the configuration file, the Option Menu and what
is entered during the RDFS process.

9. Generation of RDFS according to 501-Ed2

9.1.Overview

The generation "IEC 61970-501-Ed2" is done as follow:

o Only applies to new UML Profiles with an Ontology Class,

o A Copyright is added as a comment,

o Map special characters for the comment section is always done.

o A Copyright notice is put in Ontology Class <dc:rights>

o A Header part is outputted

o An option is used for flattening datatype

o Two files are generated:

▪ A vocabulary file for the new rdfs/owl profile mapping,

▪ A constraint file for the UML constraints expressed as SCHACL shapes.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 38 of 84

9.2.New file structure

The new file’s structure is the following one:

• Beginning: <rdf:RDF xmlns….

• Copyright as a comment

• Header part with:

o rdf:description of the Profile_Ontology Class,

o Copyright in OntologyClass.rights

o "Constraints" in OntologyClass.theme

• Profile part in the vocabulary file including all profile classes

• Profile part in the constraint file including SHACL shapes.

9.3.Copyright

A copyright notice is added in the two files as described in clause 8.3.

9.4.Special characters handling

Special characters mapping is done according to clause 8.4.

9.5.Flattening datatypes

In some cases, there is a need to make a CIMDataType equivalent with the CIMDataType.value. So
an option is proposed to add the following statement will be added to a CIMDatatype class (e.g.
AngleDegrees):

<owl:EquivalentProperty rdf:resource="#AngleDegrees.value"/>

9.6.Launch 501-Ed2 generation

When 501-Ed2 is selected, a first dialog window will appear:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 39 of 84

There are two parts in the dialog box:

• The left part is about copyright information,

• The right part is the choice for RDFS/OWL generation.

Fulfill Copyright information part as in clause 8.3.

Then fulfill the left part:

• Check or enter the namespace of the profile,

• Check if you want to have elements with their description,

• Check if you want to have datatype flattening.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 40 of 84

• Or if you do not want the full description, except for element with a given stereotype:

Once the required information has been entered, click "OK", a new window will be displayed:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 41 of 84

This window is used to say if you want to use or not special namespace for elements that are
stereotyped. The list of stereotypes (defined in the configuration file or in the Option Menu) is
shown:

• If stereotype boxes are selected, the default name space (the profile one) will be used,

• If stereotype box is unchecked, a namespace will used for these stereotype elements. The
default namespaces are given by the configuration file. But this can be changed if stereotype
box is unchecked: a new namespace could be edited and save in the configuration when
clicking on the OK button.

By saying OK, the 501-Ed2 generation process is launched, a window is popping up to give the name
of the file and its location, then the generation is finished, the “End” window is displayed. Two files
are generated:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 42 of 84

• Vocabulary file (example: filename.rdf)

• Constraints file (example: filename-constraints.rdf)

The 501-Ed2 files are created alongside with a log file named “CimSyntaxGenReport.txt”:

NOTE: 501-Ed2 parameters are given by the configuration file, the Option Menu and what is
entered during 501-Ed2 process.

9.7.XSD Generation

XSD generation is done according to IEC 62361-100 "XML Naming and Design Rules".

XSD generation menu has 4 entries:

• Two are for generating XSDs corresponding to Hierarchical UML profiles:

o WG19 style,

o WG16 style,

• One for generating XSDs corresponding to Graph profiles (that usually are outputted as
RDF Schemas):

o XsdByRef style,

• Plus, a "XsdToProf" feature to map an XSD, conforming to IEC 62361-100, to UML (reverse
engineering).

10.Generation of WG19 style XSD

10.1.Overview

WG19 style XSDs are conforming to the basic rules given by IEC 62361-100: use of an envelope name,
order element by alphabetical order (See mapping rules of IEC 62361-100). In TC57, WG14 is
following this style.

10.2.Root Class checking

Before launching the XSD generation, verify that you have at least one Root Class in the profile
package or in its sub-packages. A Root Class has a special rendering in UML diagram:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 43 of 84

There could several Root Classes in the profile, and in this case each Root Class drives its own
hierarchy without any relationship between elements of different hierarchies.

In EA, a root class is marked with an “IsActive” property. This property could be found in the EA class
property window, under the “Advanced” button:

In CimConteXtor, the root class is defined by selecting the “Edit IsBasedOn functionality” window
and checking the “is root (active)” box:

Class defined as a root class

10.3.Error Message: no root class

If CimSyntaxGen Add-In does not find a root message an “error” window will be displayed:

and a log file “CimSyntaxGenReport.txt” will be created:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 44 of 84

10.4.Select profile package and launch XSD WG 19

Select the profile package from which you want to generate an XSD and select "XSD WG19". By doing
this a first window is displayed. This window let you define your XML Schema characteristics:

• File name and location

Define file name and location

• Profile name space: this will enable to define both the profile name space and
the target name.

• Profile URI

• Profile prefix

• Root Model URI: this is the URI of the Information Model. It is used to specify
on which class a profile class is based on in the schema this will be used by the
sawsdl attribute.

• EnvelopName: this is usually the name of the profile (this element is called
envelop name in IEC 62361-100). This name will be the starting "xs:element" of
the schema, and this element will be a sequence of “Root Class”

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 45 of 84

"xs:element(s)".

• Schema version

When all schema parameters are entered: click on “OK” button, and this will display the “Root Class”
window:

The “Root Class” window let you define some of Assembly level functionalities: the association
between Header and the root class(es):

• association end role name,

• association end cardinalities.

Enter the cardinality for this Root Class and click “OK”. If there are several Root Classes, the same
number of “Root Class” windows will be displayed.

NOTE: CimSyntaxGen Add-In doing a kind of Assembly level functionalities that could have been done
at UML Assembly modelling level, like defining a header (Envelop) and its relationships with root
classes. In UML assembly model it will look that this:

Profile Root Class

Assembly Model Functionalities

define :

1. Header Class

2. Association with

Root Class

3. Association end

role name

4. and cardinality

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 46 of 84

When all RootClass windows have been taken care of, the XSD generation process is launched and
when it is finished, the “End” window is displayed:

The XSD file has been created alongside with a log file named “CimSyntaxGenReport.txt”:

NOTE: the parameters of for the schema characteristics window are placed in the configuration file
(see corresponding section).

11.Generation of WG16 Style XSD

11.1.Overview

WG16 ESMP style XSDs are conforming to

• Option rules given by IEC 62361-100:

o no envelop name,

o elements order is not alphabetical but specified by the "AttributeOrder" feature
in CimConteXtor.

• Rules defined by IEC 62325-450:

o Use of CodeLists instead of enumerations.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 47 of 84

11.2.Root Class checking

Before launching the XSD generation, verify that you have at least one Root Class in the profile
package or in its sub-packages. See above sections 10.2 and 10.3.

11.3.Select Assembly Model package and launch XSD WG 16

Select the UML Assembly Model package from which you want to generate an XSD and select "XSD
WG16". By doing this a first window is displayed. This window let you define your XML Schema
characteristics:

‒ File name and location

Select file name and location

Profile namespace

CodeList namespace
and location

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 48 of 84

‒ Profile namespace: this will enable to define both the profile namespace and the target name.

o Profile URI

o Profile prefix (not used for ESMP)

‒ Root Model URI: this is the URI of the Root Model. It is used to specify on which class a profile
class is based on in the schema this will be used by the sawsdl attribute.

‒ CodeList namespace and location:

‒ CodeList URI

‒ CodeList prefix

‒ CodeList schema location

‒ WithAnnotations: if checked, the schema will have annotations (UML element description),
otherwise no,

‒ Import: if checked, CodeList schemas will be imported, if not CodeList Schemas will be included.

11.4.ENTSO-E parameters

The user shall then provide the following information:

‒ Result File: the name of the XSD file to be generated (there is a new dialog box to state in which
folder the file is to be registered).

‒ ProfileURI: this is the standard namespace, and it is composed as follow:

urn:iec62325.351:tc57wg16:<process>:<document>:<version>:<release>

where:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 49 of 84

1. iec62325.351 shall be the stem of all European style market profile XML schema
namespaces.

2. tc57wg16 identifies the organisation or group of organisations within IEC that own the
object being referenced. In the case of TC57 this shall be the WG16.

3. <process> identifies the specific process where the object is situated, e.g. the part of the
IEC 62325 standards in which the XML schema is defined, e.g. 451-1, 451-2, 451-3, etc.

4. <document> identifies the electronic document schema.

5. <version> identifies the version of the document schema.

6. <release> identifies the release of the document schema.

‒ Prefix: blank value.

‒ RootModelURI: http://iec.ch/TC57/2013/CIM-schema-cim16#.

‒ URI Codelist: the URI of the codelist to be used, i.e. urn:entsoe.eu:wgedi:codelists.

‒ SchemaName: the filename of the codelist, i.e. urn-entsoe-eu-wgedi-codelists.xsd.

‒ PrefixCodelist: the prefix used in the schema for the codelist, i.e. cl.

‒ The case “import” enables to generate a schema with the “import” option of the codelist, if the
case is not selected, an xsd with the “include” option of the codelist is generated.

‒ Then click “OK” to generate the xsd; at the end a dialog box “End” will be displayed.

11.5.Generation process

When all schema parameters are entered: click on “OK” button,

the XSD generation process is launched and when it is finished, the “End” window is displayed:

The XSD file has been created alongside with a log file named “CimSyntaxGenReport.txt”:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 50 of 84

NOTE: the parameters of for the schema characteristics window are placed in the configuration file
(see corresponding section).

12.XSD by Ref

For a graph profile, XSDbyRef generates an XML Schema instead of an RDF Schema. So, the trick is
to be able to express in a hierarchy something that is a graph. To do that, one of the IEC 62361-100
structure is used: the "byRef" design that is a pointer to another object and this pointer ID is usually
the mRID of the object. So, each class of the graph profile (in the example Class, ClassOne and
ClassTwo) is mapped as an xml element of the profile element name (in the example "GraphByRef").
Then, each oriented association is mapped as an element (with a ref attribute) of the class that is
the origin of the oriented association. For example: ClassOne is the origin of the association with
Class, so ClassOne will have a Class (end role name) element with an xml "ref" attribute (see IEC
62361-100 for more explanation):

ClassTwo is pointing to
Class and ClassOne

ClassOne is pointing to
Class

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 51 of 84

The use case is the output of network profiles as XML file.

When selecting the "XSDByRef" menu on a package, the following window will pop up:

EnvelopName is the name
of the package profile

Information model URI

Profile namespace

Profile file name

Profile folder location

When all fields have been completed, the OK button is pressed, the processing is launched and an
XSD file is generated.

13.XSD to Prof Menu

"XSDToProf" feature is used to map XSDs that are conforming to IEC 62361-100 and are using CIM
for their semantics. The use case is to get XSDs corresponding UML profiles.

To use "XSDToProf" one must have an EA project with the CIM. To store the result (UML profile) in
EA, it is better to have a package dedicated to profile packages.

Select this upper package and launch "XSDToProf" menu. A window will open:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 52 of 84

Select the location of the XSD file

Select the CIM packages
that will be used for the
IsBasedOn relationships

Select if UML profile
relationships are been
drawn as aggregation or
navigable ones

Select the xsd you want to map to UML, by opening the directory browser: it gives the location of
the xsd file. Specify CIM packages that will be used to define IsBasedOn relationships. Select the type
of drawn relationships (navigable or aggregate) in the UML Profile. By clicking OK, the mapping
process will start and will end with the opening of an "END" pop up window.

The result is the following, under the package that was used to launch "XSDToProf":

• a new package has been created with the name of the schema top level element (here
ExportEndDevice),

• UML classes have been created (EndDevice, EndDeviceInfo and EnDeviceFunction) with the
appropriate attributes and relationships (including IsBasedOn relationships with CIM
elements),

• A diagram has been created with the classes.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 53 of 84

Profile package name

14.How to use CimSyntaxGen for HTML documentation
generation

14.1.Overview

This feature allows you to generate an HTML document that describes all the elements of a given
package with one associate UML diagram. It is a simple feature that is designed to handle simple
package with a diagram that shows all classes.

Requirement: to be able to generate HTML documentation, the selected package should:

• be self-describing (i.e. the package must not rely on elements described in another package,
otherwise the hyperlinks will not be active),

• have in the first diagram, all the classes and elements that are of interest (be sure to put this
diagram in the first place).

14.2.Select profile package

Select the profile package from which you want to generate HTML documentation, and check that
the most significant diagram is put in the first place.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 54 of 84

14.3.Select HTML generation

Go to the EA “Add-Ins” Menu, select “CimSyntaxGen” then select one of the “htmlDocumentation”
items:

• HtmlDocumentation

• ESMPHtmlDocumentation

• HtmlENTSOEDocumentation

15.Generic HtmlDocumentation generation

15.1.Overview

When selecting the generic HtmlDocumentation, you will be prompted with the usual Windows
“save file as”. Select the folder where you want to put the HTML file. Give a name for the HTML file
and “save”.

15.2.HTML file

In fact, in the chosen folder, two items are created:

• The HTML file whose name is the name given in the above step with the “.html” extension.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 55 of 84

• One folder whose name is the name given in the above step appended with “_Images”. This
folder contains all the images of the package UML diagrams. The image format is “png” and
the name of each image is the name of the corresponding diagram.

The HTML file gives you

1. Concrete Classes

2. Abstract Classes

3. Enumerations

4. Compound Types

5. Datatypes

In each category, items are put in alphabetical order.

15.3.HTML generation example using the CIM to build a Work Profile

• File name: “WorkProfile”

• EA Profile Package name: “Work”

• EA “Work” Profile Package Diagram name: “Work”

o The diagram shows one concrete class (Work) that inherits from two abstract classes
(IdentifiedObject and Document), along with appropriate Datatypes
(AbsoluteDateTime), Compounds (Status and ElectronicAddress) and Enumeration
(WorkKind).

HTML output:

• Image Folder name: “WorkProfile_Images”

Image file name: “Work.png”

• HTML file name: “WorkProfile.html”

 class Work

Work

+ kind: WorkKind [0..1]

+ priority : String [0..1]

+ requestDateTime: AbsoluteDateTime [0..1]

IdentifiedObject

+ mRID: String [0..1]

+ name: String [0..1]

+ localName: String [0..1]

+ pathName: String [0..1]

+ aliasName: String [0..1]

+ description: String [0..1]

Document

+ category : String [0..1]

+ createdDateTime: AbsoluteDateTime [0..1]

+ lastModifiedDateTime: AbsoluteDateTime [0..1]

+ rev isionNumber: String [0..1]

+ electronicAddress: ElectronicAddress [0..1]

+ subject: String [0..1]

+ title: String [0..1]

+ docStatus: Status [0..1]

+ status: Status [0..1]

«CIMDataty pe»

AbsoluteDateTime

+ v alue: String [0..1]

«Compound»

ElectronicAddress

+ lan: String [0..1]

+ email: String [0..1]

+ web: String [0..1]

+ radio: String [0..1]

+ userID: String [0..1]

+ password: String [0..1]

+ status: Status [0..1]

«Compound»

Status

+ v alue: String [0..1]

+ dateTime: AbsoluteDateTime [0..1]

+ remark: String [0..1]

+ reason: String [0..1]

«enumeration»

WorkKind

 construction

 inspection

 maintenance

 serv ice

 meter

 disconnect

 reconnect

 other

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 56 of 84

• Example for Concrete Class:

Example for Abstract Classes:

Example for Enumeration:

Example for Compound:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 57 of 84

Example for CIMDatatypes:

16.How to use CimSyntaxGen for HTML ENTSOE
Documentation generation

This HTML documentation generation is used to do output for CGMES profiles. The main difference
with the generic output (see above section) is given by parameters of the configuration file (see
configuration section):

• UML diagrams could be exported or not in the documentation depending on if
"EntsoeKeepUMLDiagrams" has been checked or unchecked in the configuration file.

• Hyperlinks between elements could be exported or not in the documentation depending on
if "EntsoeKeepHyperlinks" has been checked or unchecked in the configuration file.

• A class inheritance path could be outputed if "EntsoeKeepInheritancePath": has been
checked in the configuration file.

• For the dynamics package where images of explanations have been entered, those images
could be exported if "EntsoeKeepClassDiagrams" has been checked in the configuration file.

There is also one difference, notes that have been attached to classes in the profile are exported in
the description part of the class but highlighted in blue.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 58 of 84

17.How to use CimSyntaxGen for ESMP HTML
documentation generation

Overview

The goal of the documentation generation is to generate template that will be used to build IEC
ESMP standards or ENTSO-E documentation, so the html generation is different from the above
generations. Due to the structure of the ESMP profiling where there are several levels of modeling,
the ESMP HTML generation is going to consider these different levels:

Four different documentation outputs are available:

• Generation of both Contextual and Assembly documentation template

• Generation of 62325-351 package

• Full package of multiple contextual and assembly models

• ENTSO-E documentation

As a basic rule, in a given document package, the Contextual Model shall be always before the
Assembly Model

17.1.ENTSO-E Documentation

The generated html file outlines are as follows:

• Contextual model

o Diagram of the contextual model

o IsBasedOn dependency

• Assembly model

o Diagram of the assembly model

o IsBasedOn dependency

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 59 of 84

o List of classes: first the root class and then the other classes by alphabetic order. For
each class, the attributes are ordered as per business requirements, i.e. as they will
be listed in the XML schema. The associations between classes are also described and
the order ranking is also provided.

o List of datatypes: the list of datatypes used within the document is provided, the
order is alphabetical with first the compounds and then the CIM datatypes. In
addition, for the CIM datatypes based on a codelist, the name of the codelist is
provided.

17.2.Part 351 IEC standard generation

The “part 351” documentation, i.e. IEC 62325-351, is generated from the UML package
“ESMPClasses” in the package “IEC62325-351”.

Once the “ESMPClasses” package is selected, select the option "Creation 351" and the process will
be launched.

17.3.Conceptual and assembly models IEC standard generation

The conceptual and assembly models documentation for a document is generated from the
document package, e.g. for the acknowledgement document by selection the UML package
“Acknowledgement Document”.

NOTE: the order in the package is important, first the contextual document model and then the
assembly document model, otherwise the generated document is not good.

Once the package is selected, select the option "Contextual and Assembly” and the process will be
launched.

17.4.Set of conceptual and assembly models IEC standard generation

The conceptual and assembly models’ documentation for a set of documents is generated from the
“standard” package, e.g. for the IEC 62325-451-2 by selection the UML package “IEC62325-451-2”.
This will generate the documentation for the “Schedule Document”, the “Anomaly Report
Document” and the “Confirmation Report Document”.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 60 of 84

NOTE: Once the html file is generated, some updates are to be carried out to have an appropriate
MS Word file as per the requirements of IEC, in particular, tables and figures numbering, standard
styles to be used, etc. This is done by applying a Word macro.

18.How to use CimSyntaxGen for AsciiDoc
documentation generation

18.1.Overview

AsciiDoc is a markup language written in human-readable, plain text format. It supports all the
structural elements necessary for writing notes, documentation, articles, books, eBooks, slideshows,
web pages, technical manuals and blogs. The language can be used to produce a variety of
presentation-rich output formats including HTML, PDF, EPUB, DocBook, man page.

18.2.Document generation

The generation can only be applied on packages and is started by the ‘Ascii ESMP Documentation’
menu:

The generation works analogously to the HTML documentation generation. Diagrams are stored as
pictures in a subfolder ‘image’ created during generation.

NOTE: The generated AsciiDoc file refers to these pictures in this folder, i.e., changing the location of
this folder requires an update of the references in the AsciiDoc document.

19.How to use CimSyntaxGen to Manage CodeList

19.1.Description

This feature is used for managing ESMP enumerations and XSD CodeLists.The "ESMPEnumerations"
package contains all the enumerations used within ENTSO-E.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 61 of 84

All the schema developed in the framework of the European style market profile are using external
XML documents to provide the list of codes to be used in the various enumerations.

The following XSD documents are to be used:

• "urn-entsoe-eu-wgedi-codelists.xsd": the XSD to be used with all the CIM XSD.

• "urn-entsoe-eu-local-extension-types.xsd": the XSD to be used with all the CIM XSD.

• "etso-code-lists": the XSD to be used with all the ENTSO-E nonamespace XSD.

This module of CIMSyntaxGen enables:

• to import an existing urn-entsoe-eu-wgedi-codelists.xsd in a package.

• to generate from the ESMPEnumerations package the three codelists (previously described)
and the associated documentation.

Import

In order to carry out the imports, the following steps are to be carried out:

• Create a new package in the UML model with an associated class diagram.

• Select this new package and right click on the menu to select an "ImportCodeLists" in the
"ManageCodeLists" menu,

• A dialog box will open, enter in the "StdCodeLists" field the path of the codelist to be
imported,

• Click “OK” and the codes defined in the file “StdCodeLists” are imported.

The import function is to be carried out on an empty package; however, an empty “class” diagram is
to be included in the package before running the import function.

The enumerations generated shall not be copied into the ESMPEnumerations package, as each
enumeration has a unique GUID and enumeration is referred to, based on this GUID, in the
EMSPClasses package.

Only the attributes of enumeration could be copied from the import codelist in the
ESMPEnumerations package.

19.2.Generation of the codelists and documentation

To carry out the export, the following steps are to be carried out:

• Select an Enumeration package and right click in the menu to select "ExportCodeLists".

• A dialog bow will open.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 62 of 84

• Enter the prefix to be used in the codelist (by default it is given by the configuration file
profdata name="CodeListPrefix").

• Select the directyry where the codelists shall be exported.

• Select “Export”.

20.JSON Schema export

20.1.Overview

The export in JSON schema is done according to IEC62361-104-TS-Draft. This is still a draft. The
mapping is like what has been done with IEC 62361-100 (XML NDR).

The mapping is done for different versions of the JSON schema specification and for two kinds of
UML profiling: WG19 style and WG16 style.

• WG19 style: could have several root classes, use of special constructs like "Ref", "Union",
"XOR", sorting xml elements in alphabetical order, etc.

• WG16 style: have only one root class.

NOTE: In the JSON implementation, the order of the attributes does not follow the order of the XML
implementation.

20.2.JSON schema versions

JSON Schema specifications have several versions:

• http://json-schema.org/draft-07/schema#

• http://json-schema.org/draft/2019-09/schema#

• And a last version http://json-schema.org/draft/2020-12/schema

The supported versions are the first two ones.

NOTE: except draft-07, all schema versions are not yet supported by all validation tools.

http://json-schema.org/draft-07/schema
http://json-schema.org/draft/2019-09/schema
http://json-schema.org/draft/2020-12/schema

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 63 of 84

20.3.UML profile styles

There are different UML profile designs:

• According to WG14 design (called here WG19 design), that is mapped to the basic of IEC
62361-104.

• According To WG16 ESMP design, that is mapped to some alternate mapping and the use of
external codelists.

So, the two mappings are provided.

20.4.Connectivity between Schema, Codelist and External Codelist files

There is a logical connection between the JSON schema file of a profile, the codelist file it refers to
and an optional external/local codelist schema file. For the generation of the basis template of the
external/local codelist schema file see 20.5.

The following figure depicts the connectivity of these schema files.

Due to the lack of a comprehensive namespace functionality of JSON, contrary to XSD schemas, the
JSON schema files contain references to the directories and file paths of schemas they refer to.

20.5.External CodeList Management

The ability to refer to external CodeLists guarantees that the CodeLists are always up to date and
could be extended locally.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 64 of 84

For instance, ENTSO-E manages the standardized lists as XML schemas which are available on
ENTSO-E site. ENTSO-E provides a package with XML instance files defining the ENTSO-E CodeLists
and a sample local extension to these. The latter enables one to define local codes to be used based
on bilateral agreements with other parties, e.g. based on specific market rules for a local market.

The JSON schema mapping offers a way to have the same kind of feature as for XSD.

CimSyntaxGen provides a functionality to generate a sample external codelist JSON schema file that
can be used as template to ease the manual editing of such a local codelist schema file.

NOTE: The generation is based on a package containing elements with the stereotype ‘enumeration’
and name ending ‘Typelist’ or ‘typelist’.

The export dialogue needs an output directory (will be created if not existent) and a name of the
template file.

The following figure depicts an excerpt of the template file:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 65 of 84

20.6.Launching Json schema export

To launch JSON Schema export, select a profile package and then "Json" on the menu. Two choices
are offered:

• Export for WG19 style UML profiles

• Export for WG16 ESMP style UML profiles.

21.Generation of JSON Schema WG19 Style

When JSON/WG19 is selected, the first window is popping up:

Output of profiles conforming
WG19 models.

Output of profiles conforming
WG16 models.
- Single root element
- Use of external codelists

Avro Schema generation

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 66 of 84

Fill the given fields:

1. The envelop name is the package name of the profile,

2. Choose the result Json schema file location,

3. By default the File name is the Envelop name appended with ".schema.json"

4. Edit the profile "Json schema namespace",

5. By default the profile "Json schema ID" is the base URI of the "JsonSchemaNamespace"
appended by".schema.json"

6. Give the URI of the Information Model

7. Choose the Json Schema specification version the export will comply with two choices:

• Draft-07

• Draft 2019-09.

8. Click OK

A dialog pops up to specify how many root classes you are allowing in the instance. Fill MinOccur
and MaxOccur fields and click OK. And end windows will appear and click OK to stop the process.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 67 of 84

22.Generation of JSON Schema WG16 Style

22.1.Launching Json schema export

When JSON/WG16 is selected, the first window is popping up:

Fill the given fields:

1. The envelop name is the package name of the profile,

2. The canonical Base URI of the schema.

3. The "Json schema ID" can be specified here in the dialog or specified in the configuration.

4. Give the URI of the Information Model

5. Choose the Json Schema specification version the export will comply with, two choices:

• Draft-07

• Draft 2019-09.

6. Edit the profile "Json schema namespace",

7. ResultFileDirectory specifies the directory where the output file is stored.

8. Result FileName specifies the file name of the output.

9. Select location of Standard Codelists.

10. Select location of local Codelists XSDs.

11. Click OK

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 68 of 84

22.2.CodeList management

To be able to use external codelists with Json schema, the location for Json codelist schema must be
imposed at location that could be reached by any profile JSON schema.

23.Avro Schema export

23.1.Overview

There is not yet an official specification giving the mapping of CIM UML artefacts to AVRO schema
artefacts (like the mapping for XML and JSON schema). However, ENTSO-E provides a specification
according to which the AVRO schema generation was implemented.

The generation is started by selecting the menu entry ‘Avro Generation’:

After entering the export directory and filename and running the generation, the AVRO schema file
is exported.

NOTE: AVRO schema files have the extension ".avro".

23.2.Codelist

AVRO schema does not allow the use of external CodeLists, because there is no mechanism like JSON
Pointer. Therefore, the mapping of an element of a CodeList is done in the AVRO schema at the
requested level in the form of an array.

NOTE: AVRO schema name for enums must match the "name" syntax starts with [A-Za-z_],
subsequently contains only [A-Za-z0-9_]. So, a code cannot start with a number. A codeList that
includes such code must be changed. For the converter, such codes were prefixed with "z_" to keep

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 69 of 84

track of the code. Example in EntsoE "StandardReasonCodeType" there is a code whose value is
"999", it has been changed to "z-999".

24.Code Component export

24.1.Overview

The menu allows generation of a Core Components delivery package for WG16 ESMP Code
Components.

The Core Component delivery package is a zip file, which includes:

• a manifest xml file (conforming to the IEC Manifest XSD) that describes:

o the publication(s) from where the CodeComponents are defined,

o the CodeComponent file(s) description,

o the History file(s) describing the changes which have been considered in the
associated package, since the last IEC publication (at least).

• an IEC copyright XSD file.

• an IEC Manifest XSD file.

• the code component file(s) extracted from the IEC publication(s) (typically XSD file, XML file,
SNMP MIB file …),

All these files must be generated before the launch of CoreComponent menu, except the XML IEC
copyright and Manifest files that are generated at the time of the export.

24.2.IEC Copyright files

The XSD IEC Copyright file ("IECCopyrigth.xsd") is located in:

"C:\Users\<UserName>\AppData\Roaming\ENTSO-E\\CimSyntaxGen\Ressources\".

This XSD is used to generate the specific IEC Copyright xml file (" for the given Code Component
export. And this xml file is located also in CimSyntaxGen\Resources folder.

24.3.Delivery package name

The delivery package is standardized as follow:

{RefStandard}.{CodeComponentName}.{VersionStateInfo}.{LightFull}{PublicationStage}.zip

Where:

• RefStandard is the IEC standard name in the form of:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 70 of 84

o {IEC{StandardType}_{StandardNumber}.{PublicationYear}{EditionInfo}}

o StandardType = {_TR|_TS} or empty if IS,

o StandardNumber = 5 digits IEC numbering,

o PublicationYear = 4 digits’ year number,

o (optional) EditionInfo = _ed{Version}.{Amendment},

o Example: “IEC_TR_61850-90-4.2013_ed1.0”,

• CodeComponentName: designates a part of the parent IEC deliverable which is of type Code
Component ("XSD-Schema, RDF Schema"),

• VersionStateInfo: Code component version,

• LightFull: indicates whether the content included in the considered file, fully reflects the
Code component content (full) or reflects just a part of it (light).

• PublicationStage: reflects the IEC stage of the considered code component. Typically = {Draft}
or nothing if this is an official publication.

24.4.Launching CodeComponent

Select CodeComponent menu:

A windows opens:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 71 of 84

25.CimSyntaxGen configuration file

25.1.Managing configuration file

See 5.5.

25.2.Overview

The goal of this file is to provide parameters for CimSyntaxGen that could be tailored by the user to
fulfill its requirements. It means that the user could change some parameters and add new ones.

The file comes with two different kinds of parameters:

• appSettings: this gives the state of elements used in the Option Menu or by some
processes,

• dataProfiles: this gives schema parameters generation or Html documentation generation
parameters.

25.3.AppSettings parameters

"AppSettings" parameters are defined as xml element called "configuration" with a name and a
value. Example:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 72 of 84

<configuration name="Xmlbase" value="Checked" />

Some of those parameters are used for defining the Option Menu where the user can check or
uncheck parameter boxes. The "AppSettings" give the default value for the option parameters:
checked or unchecked boxes:

These parameters are:

• Log: enable or not the log of processing results,

• Xmlbase: enable the use of an Xmlbase element in the schemas,

• StereotypeNameSpaces: enable the use of specific namespaces for the stereotyped
elements,

• ModeBatch: Batch mode processing enabled,

• SawsdlNoPack: output or not of packages name in the sawsdl attribute in case of XSDByRef
generation,

• dataProfile: not use,

• Html ➔ check or uncheck is given by profstereo parameter,

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 73 of 84

• RDFS➔ check or uncheck is given by profstereo parameter,

These parameters values are updated when doing a "Save" in the Options Window.

There are some more parameters that are not related to the Option Menu; they are not shown, but
they drive CimSyntaxGen behavior:

• VersionConfig: version of the configuration (updated manually),

• ImportCodeList: if check CodeList schemas are imported in the profile schema, otherwise
they are included,

• Esmp: deprecated,

• ModeTest: reserved for debugging,

• EntsoeKeepInheritancePath: used for Entsoe Html Documentation generation, if checked
enable the output of inheritance path field for a class,

• EntsoeKeepUMLDiagrams: used for Entsoe Html Documentation generation, if checked
enable the output of UML diagrams,

• EntsoeKeepClassDiagrams: used for Entsoe Html Documentation generation of "Dynamics
package", if checked enable the output of Notes diagrams,

• EntsoeKeepHyperlinks: used for Entsoe Html Documentation generation, if checked enable
the output of hyperlinks in the documentation,

• EntsoeManageCodeLists: make menu for manage Code list,

• NavigationEnabled: defines if the relation for hierarchy class is shown as an arrow or an
aggregation,

• XSDByRef: is XSDByRef menu is activated or not,

• SelectedCanonicalPackagesForXsdToProf: defines what are the information model packages
the imported schema UML mapping will be based on,

• ImageExt: gives the image format of the exported diagram files; could be .emf, bmp, .jpg,
.gif, .png, .tga.

25.4.DataProfile parameters

These parameters are specific for profile management; they are called "dataprofile". There are four
kinds of parameters that are used to drive schemas and documentation generation:

• profdata: these are simple parameters that have a name and a value, example:

<profdata name="DefaultXSDFilePath" value=".\\essai.xsd"/>

• profstereo these are complex parameters that have a name and some other items, example:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 74 of 84

<profstereo name="ShortCircuit" prefix="cim" uri="http://iec.ch/TC57/2013/CIM-schema-cim16#" html="Checked"
rdfs="Checked" />

• shacldata: these are simple parameters used for constraints export and that have a name
and a value, example:

<shacldata name="descriptionAttributeCardinality" value="This constraint validates the cardinality of the
property (attribute)." />

• jsondata: these are simple parameters used for json export and that have a name and a
value, example:

<jsondata name="JsonSchemaVersions" value="http://json-schema.org/draft-07/schema#|http://json-
schema.org/draft/2019-09/schema#" />

25.5.Profdata parameters

ProfData General:

These parameters are used for the edition of the header of the xsd file.

• DefaultXSDFilePath: default xsd file location in the directory,

• CurrentXSDFilePath: current xsd file location,

• DefaultTargetNamespace: default target namespace for the schema,

• ProfileNamespace: URI of the profile namespace

• TargetNamespace: value of the target namespace

• DefaultProfileNamespace: profile default namespace.

ProfData XSD WG19

• DefaultRootModelURI: default value for the URI of the model used as the model on which
the profile is based on,

• RootModelURI: value of the URI of the model used as the model on which the profile is based
on,

• Prefix: value of the prefix for the profile namespace,

• EnvelopName: name of the profile,

• Version: version number for this profile.

ProfData XSD WG16

• URICodelist: current value of the Codelist URI, CodeList namespace,

• PrefixCodelist: prefix for the code list namespace,

• URISchemaLocation: codelist schema location,

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 75 of 84

• CodeListLocalLocation: codelist local extension schema location,

• CodeListLocation: value="urn:entsoe.eu:wgedi:codelists"

• ExtensiontXSDFilePath: current extension xsd file location.

ProfData RDFS

• ListStereoNamespace: list of stereotypes used in the profile, example
"Entsoe|ShortCircuit|Operation|Abstract"

• ListStereoNamespaceExportable: list of stereotypes that will be used to be exported or not
in an equipment profile rdf schema, example "ShortCircuit|Operation"

• EntsoeEquipmentProfile: name of the package for the equipment profile,

• EntsoeDataTypesDomain: name of package where there are profile datatypes,

• EntsoeExpStereo: name of the stereotype used to specify special processing for element
having this stereotype,

• PackageExtension: name of the extension package,

• EntsoeVersion: name of the version class for EntsoE profiles.

ProfData XSDToProf

• ListSingularName value="Status|Address|StreetAddress" For XSDToProf use of singular
name.

ProfData for Copyright

• CCTypeOfDocument: type of document (IS/TS/TR)

• CCStandardNumber: standard reference (62325, 61970, 61968, 61970-600 ed1, 61970-600
ed2)

• CCProfileName: profile name

• CCCodeComponentName: kind of component (RDFS_Schema, XML Schema)

• CCDiffusionState: diffusion level (Draft/IEC/ENTSOE/ENTSOEdraft/others)

• CCVersionStateInfo: version of component

• CCselectedProfiles: name of the file selected for Copyright information

• CCLightFull: component with or without elements description (full/light)

• CCPublicationDate: date of component generation.

ProfData CodeComponent

• CCSelectedFiles: name of files in the CodeComponent zip file

• CCPackageName: name of the CodeComponent zip file.

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 76 of 84

25.6.Profstereo parameters

 These parameters are for Stereotypes processing for RDFS processing and HTML documentation
processing. The template for "profstereo" is:

• Name: stereotype name,

• Prefix: prefix for the stereotype namespace,

• Uri: URI of the stereotype namespace,

• Html: says if the stereotype is used for Html documentation,

• Rdfs: says if the stereotype is used for RDFS generation.

25.7.SHACL parameters

These parameters (name and value) are used for RDFS SHACL constraints export and gives either
the definition of a constraint or the message that will be generated when the constraint is
validated against an instance.

• descriptionAttributeCardinality: description used for a SHACL attribute cardinality definition
(example: "This constraint validates the cardinality of the property (attribute).").

• messageAttributeCardinality: description of the message that will be delivered in case the
SHACL attribute cardinality rule fails (example: "Cardinality violation. Upper bound shall be
1 | Cardinality violation. Missing required property (attribute). | Cardinality violation. Upper
bound shall be 1 or missing required property (attribute)").

• descriptionAssociationCardinality: description used for a SHACL association multiplicity
definition (example: "This constraint validates the cardinality of the association at the used
direction.").

• messageAssociationCardinality: description of the message that will be delivered in case the
SHACL association multiplicity rule fails (example: "Cardinality violation. Upper bound shall
be 1. | Cardinality violation. Missing required association. | Cardinality violation. Upper
bound shall be 1 or missing required association.").

• descriptionValueType: description used for a SHACL ValueType definition (example: "This
constraint validates the value type of the association at the used direction.").

• messageValueType: description of the message that will be delivered in case the SHACL
ValueType rule fails (example: "One of the following does not conform: 1) The value type
shall be IRI; 2) The value type shall be an instance of the class: {the IRI of the class}.").

• descriptionDatatype: description used for a SHACL DataType definition (example: "This
constraint validates the datatype of the attribute").

• messageDatatype: description of the message that will be delivered in case the SHACL
DataType rule fails (example: "The datatype is not literal, or it violates the xsd datatype. |
The datatype is not IRI (Internationalized Resource Identifier) or it is an enumerated value

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 77 of 84

which is not part of the enumeration. | Blanknode (compound datatype) Violation. Either it
is not a BlankNode (nested structure, compound datatype) or it is not the right class").

25.8.JSON parameters

The parameters (name and value) are used for JSON Schema export:

• LastJsonExportedFile: URI of the last exported Json schema (use for Avro schema converter)

• ForWg: JSON style export (wg19 or wg16)

• CanonicalBaseURI: URI of the canonical model use for the profiles (use for modelReference:

example http://iec.ch/TC57/2020/).

• JsonNameSpace: Json schema namespace keyword (example: http://iec.ch/TC57/2020/CIM-

JsonProfiles/EndDeviceEvents#).

• JsonSchemaID: ID of Json schema (used for $id keyword, example:

https://iec.ch/TC57/2020.EndDeviceEvents.schema.json).

• JsonSchemaVersions: Json schema specification the Json schema export is conformed to

(possible value: http://json-schema.org/draft-07/schema#|http://json-

schema.org/draft/2019-09/schema#).

• JsonSchemaVersion: Json schema specification used for the export (example: http://json-

schema.org/draft-07/schema#).

• CodeListModelURI: URI of the model the codelists are referring (used for modelReference in

Codelists, example: http://iec.ch/TC57/2010/62325-351-Ed3#).

• JsonCodeListschemalocation: Location of the standard XSD codelists that will be used for Json

Standard codelist export.

• JsonLocalCodeListSchemaLocation: Location of the local XSD codelists that will be used for

Json Local codelist export.

26.UML/XSD generation principles

26.1.XSD generation basic principles

The basic principles of XSD generation are:

• Each UML class is generated as an XML "complexType" declared globally, and its name
is the UML class name,

• Each UML class attribute is generated as an XML local element inside the

http://iec.ch/TC57/2020/
http://iec.ch/TC57/2020/CIM-JsonProfiles/EndDeviceEvents
http://iec.ch/TC57/2020/CIM-JsonProfiles/EndDeviceEvents
https://iec.ch/TC57/2020.EndDeviceEvents.schema.json
http://json-schema.org/draft-07/schema#|http://json-schema.org/draft/2019-09/schema
http://json-schema.org/draft-07/schema#|http://json-schema.org/draft/2019-09/schema
http://json-schema.org/draft-07/schema
http://json-schema.org/draft-07/schema
http://iec.ch/TC57/2010/62325-351-Ed3

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 78 of 84

corresponding class associated with "complexType", whose name is the UML attribute
name and whose type name is the UML attribute type name:

class OtherProfile

Profile_OtherClass

+ attribute: String [0..1]

<xs:complexType name="Profile_OtherClass">

<xs:sequence>

<xs:element name ="attribute" type="xs:string" use="optional"/>

</xs:sequence>

</xs:complexType>

• Each UML class aggregation is generated as an XML local element inside the
corresponding class associated "complexType", whose name is the UML aggregation
end role name and whose type name is the UML associated class name:

class OtherProfile

Profile_OtherClass Profile_Class
+Class

0..1

<xs:complexType name="Profile_OtherClass">

<xs:sequence>

<xs:element name ="Class" type="Profile_Class" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

Each UML Primitive is mapped to an XML datatype or a union of XML datatypes:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 79 of 84

xs:integer

class DomainPackage

«Primitive»

String

«Primitive»

Integer

«Primitive»

Float

xs:string

xs:float xs:double

Each UML enumeration is mapped to a simpleType that is an enumeration restriction based on an
XML primitive (usually an xs:string) and whose name is the UML enumeration name :

class DomainPackage

«enumeration»

StringEnumerationKind

 String1

 String2

 String3

<xs:simpleType name="StringEnumerationKind>

<xs:restriction base="xs:string">

<xs:enumeration value="String1"/>

<xs:enumeration value="String2"/>

<xs:enumeration value="String3"/>

</xs:restriction>

</xs:simpleType>

26.2.CIMDatatype generation principles

UML CIMDatatype generation are a special use case:

• Each UML CIMDatatype value attribute is mapped to a "simpleType" whose name is
the name of the UML CIMDatatype concatenated to an hyphen followed by the term
”base”:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 80 of 84

 class DomainPackage

«CIMDatatype»

Voltage

+ value: Float

+ unit: UnitSymbolKind [0..1]

+ multiplier: UnitMultiplierKind [0..1]

<xs:simpleType name="Voltage-base">

<xs:restriction base="xs:float"

</xs:restriction>

</xs:complexType>

• Each UML CIMDatatype is then mapped to a "complexType", whose name is the UML
CIMDatatype name. This complex type is an extension of "simpleType" defined before,
where all other UML datatype attributes (different from the attribute “value”) are
mapped to XML attributes:

 class DomainPackage

«CIMDatatype»

Voltage

+ value: Float

+ unit: UnitSymbolKind [0..1]

+ multiplier: UnitMultiplierKind [0..1]

<xs: complexType name="Voltage">

<xs: extension base="Voltage-base"

<xs: attribute name ="unit" type="UnitSymbol" use="optional" fixed="V"/>

<xs: attribute name ="multiplier" type="UnitMultiplier" use="optional"/>

</xs:extension>

</xs:complexType>

27.Subclass inherited association and XSD generation
principles

In case of inheritance, dealing with profile subclass inherited association end role name when
generating an XSD requires special mapping. In a straight application of the rule for association end
role name mapping there could be an element name duplication. This could happen in the following
examples:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 81 of 84

class OtherProfile

InformationModel::

OtherClass
OtherClass

InformationModel::Class Class

InformationModel::

InheritingClass
InheritingClass

InformationModel::

InheritingClass2 InheritingClass2
«IsBasedOn»

«IsBasedOn»

«IsBasedOn»

+Class 0..1

«IsBasedOn»

+OtherClass 0..*

+Class 0..*

or

class OtherProfile

InformationModel::

OtherClass
OtherClass

InformationModel::Class

InformationModel::

InheritingClass
InheritingClass

InformationModel::

InheritingClass2 InheritingClass2
«IsBasedOn»

«IsBasedOn»

+Class 0..1

+Class 0..1

«IsBasedOn»

+OtherClass 0..*

+Class 0..*

The standard XSD association mapping would be :

<xs:complexType name="OtherClass">

 <xs:sequence>

 <xs:element name ="Class" type="InheritingClass"/>

<xs:element name ="Class" type="InheritingClass2"/>

 </xs:sequence>

</xs:complexType>

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 82 of 84

In XML, a schema could not have two elements with the same name but with different types.

To avoid invalid XSDs, new mapping rules must be used, and these rules depend on the terms that
are used for the UML end role name. There are three cases:

1. End role name matches the associated abstract super class name,

2. End role name matches a qualifier term concatenated to an underscore that prefixes the
associated abstract super class name,

3. End role name has no relation to the associated abstract super class name.

First case : end role name matches associated super class name

In this case the mapping is: for each association with a sub-class, the association will be mapped to
an element whose name will be the UML sub-class name (instead of the super class name). In the
example “Class” is the end role name and the super class name is “Class”, then the XSD generation
will produce:

<xs:complexType name="OtherClass">

 <xs:sequence>

 <xs:element name ="InheritingClass" type="InheritingClass"/>

<xs:element name ="InheritingClass2" type="InheritingClass2"/>

 </xs:sequence>

</xs:complexType>

This in fact is equivalent to the following UML diagram where the end role names would have been
changed to be the same as those of the subclasses:

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 83 of 84

class OtherProfile

InformationModel::

OtherClass
OtherClass

InformationModel::Class

InformationModel::

InheritingClass
InheritingClass

InformationModel::

InheritingClass2 InheritingClass2
«IsBasedOn»

«IsBasedOn»

+InheritingClass2 0..1

+InheritingClass 0..1

«IsBasedOn»

+OtherClass 0..*

+Class 0..*

Second case : end role name is a qualifier, and underscore and super class name

At the information model level and/or profile level the end role name could be qualified and thus
have a qualifier term.

class OtherProfile

InformationModel::

OtherClass
OtherClass

InformationModel::Class

InformationModel::

InheritingClass
InheritingClass

InformationModel::

InheritingClass2 InheritingClass2

Class
«IsBasedOn»

«IsBasedOn»

«IsBasedOn»

+Special_Class 0..1

«IsBasedOn»

+OtherClass 0..*

+Class 0..*

In this case the mapping is: for each association with a sub-class, the association will be mapped to
an element whose name will be the qualifier term followed by and underscore followed by the UML
sub-class name (instead of the qualifier term, the underscore and the super class name). Example
end role name is “Special_Class”, super class name is “Class”, then the XSD generated will be:

<xs:complexType name="OtherClass">

 <xs:sequence>

CimSyntaxGen manual
Draft v10.0.3 | 6 January 2025

ENTSO-E AISBL | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e Page 84 of 84

 <xs:element name ="Special_InheritingClass" type="InheritingClass"/>

 <xs:element name ="Special_InheritingClass2" type="InheritingClass2"/>

 </xs:sequence>

</xs:complexType>

Third case: end role name has no relation with super class name

At Information Model level, end role name has nothing to do with the super class name.

class OtherProfile

InformationModel::

OtherClass
OtherClass

InformationModel::Class

InformationModel::

InheritingClass
InheritingClass

InformationModel::

InheritingClass2 InheritingClass2

Class
«IsBasedOn»

«IsBasedOn»

«IsBasedOn»

+Target 0..1

«IsBasedOn»

+OtherClass 0..*

+Class 0..*

In this case the mapping follows this rule: for each association with a sub-class, the association will
be mapped to an element whose name will be the end role name followed by and underscore
followed by the UML sub-class name (instead of the qualifier term, the underscore and the super
class name). Example end role name is “Target”, super class name is “Class”, then the XSD generated
will be:

<xs:complexType name="OtherClass">

 <xs:sequence>

 <xs:element name ="Target_InheritingClass" type="InheritingClass"/>

 <xs:element name ="Target_InheritingClass2" type="InheritingClass2"/>

 </xs:sequence>

</xs:complexType>

